Chapter 4

Carbon and the Molecular Diversity of Life

PowerPoint® Lecture Presentations for

Biology

Eighth Edition Neil Campbell and Jane Reece

Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

Overview: Carbon: The Backbone of Life

- Why dedicate a whole chapter to Carbon?
- Importance of Carbon:

Periodic Table

H 1	Periodic Table of the Elements										He						
Li 3	4 hydrogen Be alkali metals					poor metals nonmetals				B 5	C ⁶	N ⁷	0 8	F ⁹	10 Ne		
Na	12 Mg	■ transition motals						noble gases rare earth metals				AI	Si	15 P	16 S	CI	18 Ar
19 K	Ca	SC SC	Ti 22	V 23	Cr	25 Mn	²⁶ Fe	27 Co	28 Ni	Cu	Zn	Ga	Ge Ge	As	Se	35 Br	36 Kr
Rb	38 Sr	39 Y	Zr	Nb	Mo Mo	TC	Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	Sn	Sb	Te ⁵²	53 	Xe Xe
55 Cs	Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Ti	Pb	83 Bi	84 Po	85 At	Rn
87 Fr	Ra Ra	Ac				107 Uns	108 Uno										

Ce 58	Pr	Nd	Pm						Ho Ho	68 Er	Tm	Yb	Lu Lu
90 Th	Pa Pa	92 U		94 Pu	95 Am	96 Cm	97 Bk	98 Cf	Es Es	Fm	Md	102 No	103 Lr

Fig 4-3

Name	Molecular Formula	Structural Formula	Ball-and-Stick Model	Space-Filling Model	
(a) Methane	CH ₄	H — C — H 		6	
(b) Ethane	C ₂ H ₆	H H H H H		3	
(c) Ethene (ethylene)	C ₂ H ₄	H C=C H		30	

- How many valence electrons does C have?
- How many covalent bonds can C form with other atoms?
- What atoms most frequently bond with C?

- Carbon chains form the skeletons of most organic molecules
- Carbon chains vary in length and shape

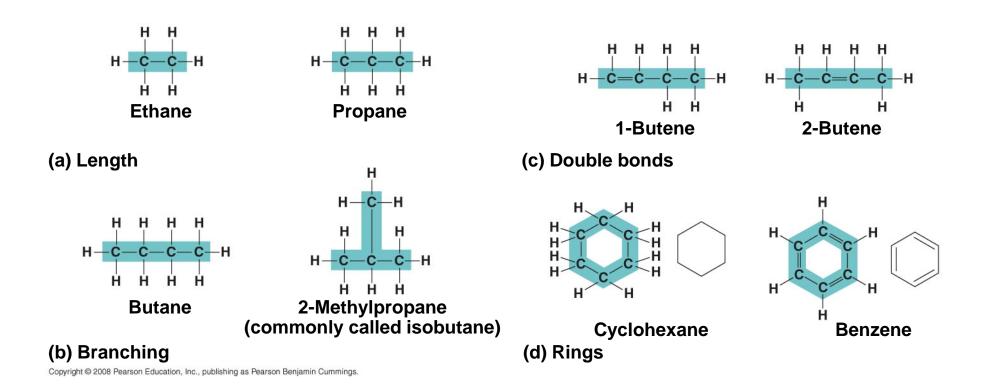
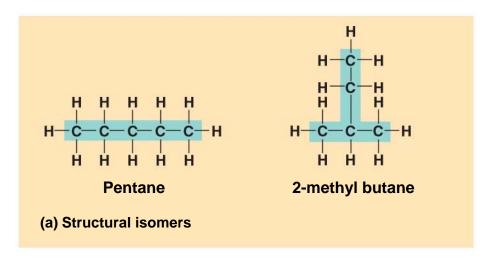
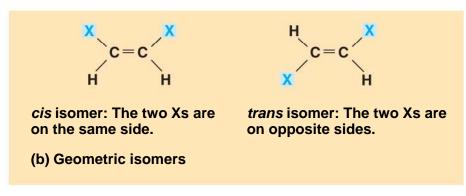
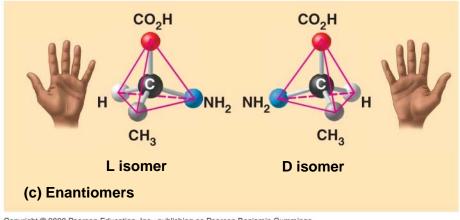




Fig. 4-5

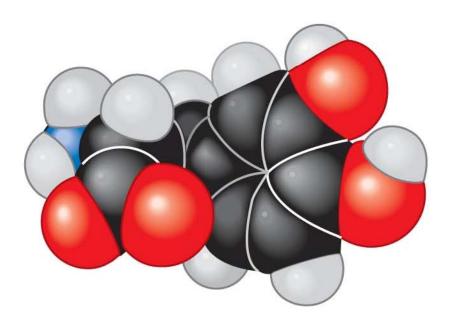

Fig. 4-7

What is an isomer?

Do you have to have a double bond?

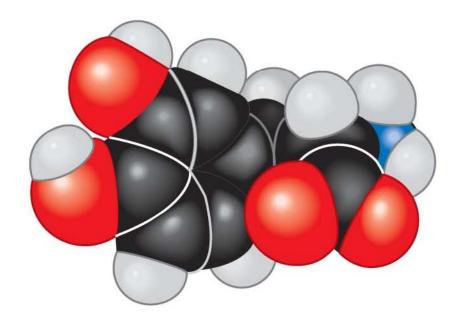
What is an asymmetric carbon?

Does it really matter?


Two enantiomers of a drug may have different effects

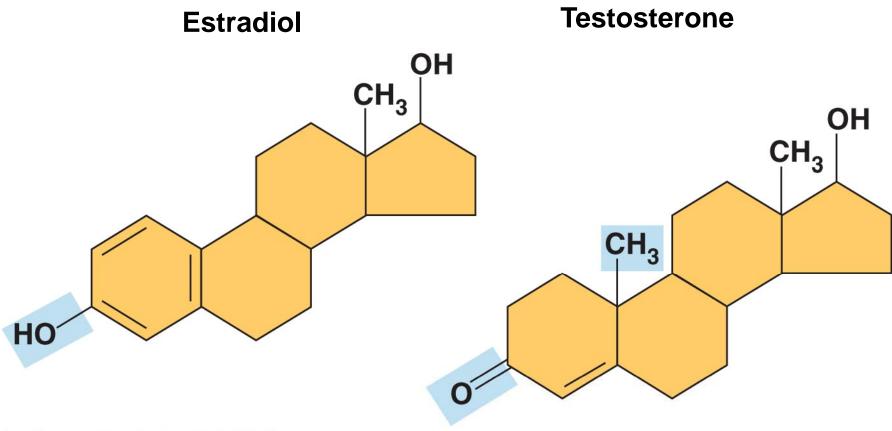
Drug	Condition	Effective Enantiomer	Ineffective Enantiomer		
Ibuprofen	Pain; inflammation	S-lbuprofen	R-lbuprofen		
Albuterol	Asthma	R-Albuterol	S-Albuterol		

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

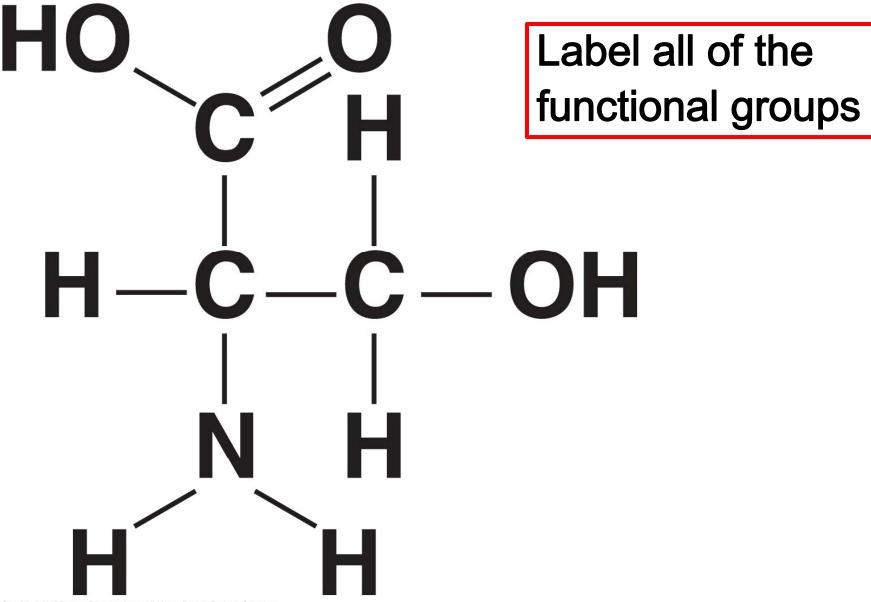

PLAY

Animation: L-Dopa

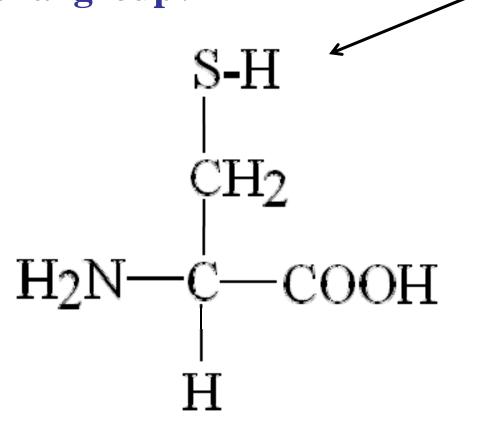
L-dopa


Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

D-dopa

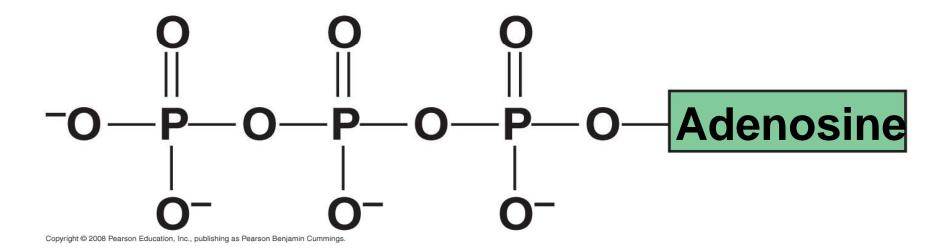

Fig. 4-9

Distinctive properties of organic molecules depend not only on the carbon skeleton but also on molecular components attached to it



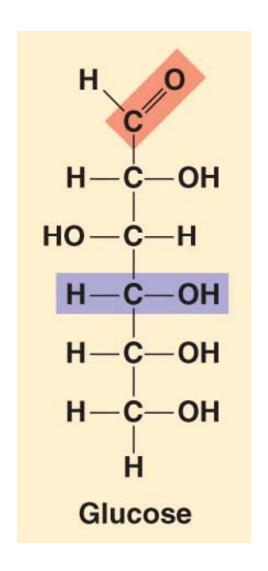
Functional groups are the components of organic molecules that are most commonly involved in chemical reactions

- Seven important functional groups Draw them:
 - Hydroxyl group
 - Carbonyl group
 - Carboxyl group
 - Amino group
 - Sulfhydryl group
 - Phosphate group
 - Methyl group


Name and describe the importance of this functional group?

cysteine

Name this molecule?


What is the importance of its functional groups?

Is this molecule soluble in water?

- yes
- no

The Chemical Elements of Life: A Review

BIG take-home messages are: