Molecular Shapes: Valence Shell Electron Pair Repulsion

In order to predict molecular shape, we assume the valence electrons of each atom in the molecule repel one another.
When this occurs, the molecule adopts a 3D geometry that minimizes this repulsion where:

$$lp-lp > lp-bp > bp-bp$$

This process is known as Valence Shell Electron Pair Repulsion (VSEPR) theory.

A molecule can be described in terms of the distribution of the bonding atoms about the central atom: Molecular Geometry (MG)

A molecule can be described in terms of the distribution of the bonding pair electrons (bp) and lone pair electrons (lp) about the central atom: Electronic Geometry (EG)
There are five fundamental shapes that describe the electronic geometries for molecular shape:

- 2 pairs of electrons: Linear
- 3 pairs of electrons: Trigonal planar
- 4 pairs of electrons: Tetrahedral
- 5 pairs of electrons: Trigonal bipyramidal
- 6 pairs of electrons: Octahedral

Summary of VSEPR Molecular Geometries

<table>
<thead>
<tr>
<th>Electron Groups</th>
<th>Lone Pairs</th>
<th>Bonds</th>
<th>Geometry</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>Linear</td>
<td>BeCl₂</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>Trigonal planar</td>
<td>BF₃</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>Bent</td>
<td>SO₂</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>Tetrahedral</td>
<td>CH₄</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>Trigonal pyramidal</td>
<td>NH₃</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>Bent</td>
<td>H₂O</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>Trigonal bipyramidal</td>
<td>PCl₅</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>4</td>
<td>See-saw</td>
<td>SF₄</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>T-Shaped</td>
<td>ClF₃</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>linear</td>
<td>I⁻</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
<td>Octahedral</td>
<td>SF₆</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>5</td>
<td>Square pyramidal</td>
<td>SbCl₅²⁻</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>4</td>
<td>Square planar</td>
<td>XeF₄</td>
</tr>
</tbody>
</table>
What are the approximate bond angles at each number?
Remember, the 2-D Lewis structure is not to scale...

Here is the 3-D rendering showing the true bond angles.
Bonding Theories for Covalent Molecules (1):

Valence Bond Theory

\(VSEPR \rightarrow \) predicts the 3-dimensional molecular (\(MG \)) and electronic (\(EG \)) geometries of a large number of covalent compounds and polyatomic anions.

Valence Bond (\(VB \)) theory describes these geometries in terms of the bonding orbitals used by the atoms in these molecules.

Valence bond theory states that bonding in covalent compounds occurs via the overlap of two half-filled orbitals of the bonding atoms.

In order to achieve the correct bond angles as predicted by VESPR, the atomic orbitals on each bonding atom “mix” to form new “hybrid” bonding orbitals.

Valence Bond Terminology:

- **Overlap:** two orbitals existing in the same region of space
- **lp:** lone pair of electrons (non-bonding)
- **bp:** bonding pair of electrons (result of orbital overlap)
- **Central atom:** the atom of concern in a molecule
- **hybridization:** the linear combination of atomic orbitals
- **hybrid orbital:** bonding orbitals that arise from the mixing of AO’s.
- **\(\sigma \)-bond:** (sigma bond) overlap of orbitals along the bond axis
- **\(\pi \)-bond:** (pi bond) overlap of orbitals above and below the bond axis.
- **single bond:** one \(\sigma \)-bond
- **double bond:** one \(\sigma \)-bond & one \(\pi \)-bond
- **triple bond:** one \(\sigma \)-bond & two \(\pi \)-bonds
Consider methane: \(\text{CH}_4 \)

We know that methane has a tetrahedral molecular geometry.

If the H–atoms were to bond via overlap with the carbon valence orbitals, this geometry could not be attained. These atomic orbitals would result in the wrong bond angles.

In order to attain the needed geometry, the atomic orbitals (AO’s) mix or **hybridize** to form new valence bond orbitals. This hybridization determines by the electron domain geometry for the central atom.

2s

\[\uparrow \downarrow \]

2p

\[\uparrow \uparrow \downarrow \downarrow \] mix or \[\text{“hybridize”} \]

New \(sp^3 \) hybrid valence bond orbitals.
Bonding in methane involves the overlap of the new \(sp^3 \) hybrid orbitals in carbon with the 1s orbitals in hydrogen.

\[
\begin{array}{c}
\uparrow \\
2p
\end{array}
\quad \begin{array}{c}
\uparrow \\
\uparrow
\end{array}
\quad \text{Carbon}
\]

\[
\begin{array}{c}
\uparrow \\
2s
\end{array}
\quad \begin{array}{cccc}
\downarrow & \downarrow & \uparrow & \uparrow
\end{array}
\]

Each overlap contains two shared electrons, one from each bonding nuclei.

\(sp^3 \) hybrid valence bond orbitals.

Each overlap results in a \(\sigma \)-bond.
From this we can say that any molecule that has an *electronic geometry* that is *tetrahedral* in shape must involve sp3 hybridization at the central atom.

New sp3 hybrid valence bond orbitals.

sp^2 hybridization

One s orbital

Two p orbitals

sp^2 hybrid orbitals shown together (large lobes only)

Three sp^2 hybrid orbitals
The three sp² orbitals spread out in a plane with the left over p-orbital above and below the plane.

Bonding in an sp² hybridized atom is shown below:

Each of the three sp² orbitals can form a σ-bond with an other atom.

The left over p-orbital can form a π-bond with another half-filled p-orbital.
An example of sp² hybridization is given by C₂H₄ (ethene):

Each sp² orbital can form a σ-bond, two with each of the H’s and one with the other carbon.

The left over p-orbitals on each carbon overlap to form the π-bond (second half of the double bond).

The set of orbitals sp² + p

Sigma (σ) bonds

Overlap of p orbitals leading to pi (π) bond
Other examples of molecules with sp² hybridization are:

- CH₂O formaldehyde
- SO₂ sulfur dioxide

Conclusion: When a central atom has a **trigonal planar** electronic geometry (EG), it is most likely to bond through sp² hybridization. Compounds containing double bonds (σ + π) most often have sp² hybridization.
The \textit{sp} orbitals spread out to form a \textit{linear} geometry (directed away from one another) leaving the p orbitals perpendicular to the molecular axis.

The \textit{sp} orbitals can form \textit{\(\sigma\)-bonds} or hold lone pairs. One of the p orbital can form the \textit{\(\pi\)-bond} in a double bond or the two p’s can form the \textit{\(\pi\)-bonds} in a triple bond.

\textit{An example of sp hybridization is given by C}_2\textit{H}_2 (acetylene)

\[\begin{array}{c}
\uparrow & \uparrow \\
\text{2p} & \\
\end{array} \quad \begin{array}{c}
\uparrow & \uparrow & \uparrow \\
\text{2p} & \\
\end{array} \]

\textit{Carbon}

\[\begin{array}{c}
\uparrow \downarrow \\
\text{2s} & \\
\end{array} \]

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure}
\caption{\textit{Bonding in C}_2\textit{H}_2:} H–C≡C–H
\end{figure}

\begin{itemize}
\item \textit{\(\sigma\)-bond} H(1s) + C\textsubscript{(1)}(sp)
\item \textit{\(\pi\)-bond} in plane C\textsubscript{(1)}(2p) + C\textsubscript{(2)}(2p)
\item \textit{\(\sigma\)-bond} \ C\textsubscript{12}(sp) + C\textsubscript{2}(sp)
\item \textit{\(\pi\)-bond} \ C\textsubscript{(1)}(2p) + C\textsubscript{(2)}(2p)
\end{itemize}
Other examples of molecules with sp hybridization are:

\[
\begin{align*}
\text{N}_2 & :\text{N}=\text{N}: \\
\text{CN}^- & (\text{cyanide anion}) \\
& [:\text{C}=\text{N}:]^-
\end{align*}
\]

Conclusion: When a central atom has a linear electronic geometry (EG) with no lone pairs, it is most likely to bond through sp hybridization.

Compounds containing triple bonds (\(\sigma + 2\pi\)) or adjacent double bonds (\(\text{CO}_2\)) have sp hybridization.

Molecular Orbital (MO) Theory (Ch. 10.3)

Lewis dot, VESPR & Valence Bond (VB) theories all do a good job at predicting the shapes and bonding in covalent molecules.

Chemists however sometimes require another theory of bonding that explains phenomenon such as paramagnetism in covalent molecules or why certain species form unstable compounds while others don’t.

To address such issues, we can describe bonding from a perspective of *Molecular Orbitals*.

In MO theory, the *atomic orbitals* on individual atoms combine (constructively and destructively) to produce new *molecular orbitals* that give rise to bonding and anti-bonding orbitals that exist between nuclei.
Molecular Orbital Theory (10.3) has several advantages and differences over VSEPR & VB theory:

• **MO** does a good job of predicting electronic spectra and paramagnetism, when VSEPR and the VB theories don’t.

• The **MO** theory like VB theory, predicts the bond order of molecules, however it does not need resonance structures to describe molecules.

• MO theory treats molecular bonds as a sharing of electrons between nuclei. Unlike the VB theory, which treats the electrons as localized hybrid orbitals of electron density.

• **MO** theory says that the electrons are *delocalized*. That means that they are spread out over the entire molecule.

The main drawback to our discussion of **MO** theory is that we are limited to talking about *diatomic molecules* (molecules that have only two atoms bonded together), or the theory gets very complex.

MO Theory: Considered a molecule A-B

When two *wave functions* (orbitals) on different atoms add constructively they produce a new MO that promotes bonding given by:

\[
\Psi_A + \Psi_B \rightarrow \Omega_{AB}
\]

When two *wave functions* (orbitals) on different atoms add destructively (subtract) they produce a new MO that promotes anti-bonding bonding given by:

\[
\Psi_A - \Psi_B \rightarrow \Omega^*_{AB}
\]

The “*bonding*” MO (\(\Omega_{AB}\)) is lower in energy than the “*anti-bonding*” MO (\(\Omega^*_{AB}\)).
MO Theory:
The lower energy *bonding molecular* orbital (1) stabilizes the molecule.
The higher energy *anti-bonding molecular orbital* (2) destabilizes the molecule.

Consider H_2

When the $1s$ orbitals of each H-atom subtract, an anti-bonding orbital forms.

When the $1s$ orbitals of each H-atom add, a bonding orbital forms.
Terminology in MO theory:

- **σ-bonding orbital:** stabilizing MO that exists between nuclei.
- **σ*-anti-bonding orbital:** destabilizing MO that exists between nuclei.
- **π-bonding orbital:** stabilizing MO that exists above and below the inter nuclear axis.
- **π*-anti-bonding orbital:** destabilizing MO that exists above and below the inter nuclear axis.

Node: region of zero probability

Ground state: lowest energy configuration of electrons in a molecule

Excited state: electron(s) moved to higher energy MO’s

\[
\text{BO} = \frac{\# \text{ of bonding electrons in MO's} - \# \text{ of anti-bonding electrons in MO's}}{2}
\]

MO Diagrams:

Once again we consider the simplest molecule, H\textsubscript{2}-.

When two hydrogen atoms combine the 1s orbitals on each can add or subtract to form a σ(1s) bonding or σ*(1s) anti-bonding orbital.

Each H-atom has one 1s electron that can contribute to the MO bonding and anti-bonding MO’s.

Just as in the electron configurations of atoms, the electron fill from the lowest energy MO first (Aufbau principle) only pairing when forced to (Hund’s rule). Each MO can only hold two electrons of opposite spin (Pauli principle).
Bond Order:
From this we find that the bonding in H₂ is described by:

\[
BO = \frac{\text{# of bonding electrons in MO's} - \text{# of anti-bonding electrons in MO's}}{2} = \frac{2 - 0}{2} = 1
\]

Bond Order = 1 (single bond)

MO electron configuration of: \(\sigma^2(1s) \)

One also sees that the molecule (H₂) is diamagnetic (no unpaired electrons)

Excited States:
What happens to a H₂ molecule if one of the electrons is excited to the anti-bonding orbital?

\[
BO = \frac{2 - 0}{2} = 1
\]

ground state H₂

\[
\uparrow \sigma^*(1s) \uparrow
\]

\[
\downarrow \sigma(1s) \uparrow \uparrow \sigma^*(1s) \uparrow
\]

excited state H₂

\[
BO = \frac{1 - 1}{2} = 0
\]

The molecule falls apart!

Photodissociation
MO’s arising from the p–orbitals

Recall that the three p–orbitals are all perpendicular to one another.

End on addition gives rise to σ & σ* bonds

Sideways addition gives rise to two sets of π & π* bonds

The MO correlation diagram for the 2p atomic orbitals

The three 2p orbitals on each side combine to form six new Molecular Orbitals that can accommodate up to 12 electrons.

Experimentally, it is seen that the σ₂p & the π₂p MO’s switch for B₂, C₂ & N₂ (see page 349-50)
The overall MO diagram for the 1s, 2s and 2p orbitals is:

Bonding in \(\text{O}_2 \)

Since the 1s and 2s MO’s are full, they do not contribute any net bonding.

Any net bonding will be determined by the 2p MO’s.

Each O–atom has four 2p electrons:

The electrons fill the MO’s fill by the Aufbau principle and Hund’s rule:
This agrees with the Lewis dot structure:

\[\cdot \text{O}=\text{O} \cdot \]

However, VB theory did not tell us that the molecule is paramagnetic!
Molecular Orbital configuration for O₂

\[\sigma_{1s}^2 \sigma_{2s}^* 2 \sigma_{2s}^* 2 \sigma_{2p}^* \pi_{2p}^* \pi_{2p} \]
Bonding in $O_2^2^-$

Each O–atom has four 2p electrons:

The electrons fill the MO's fill by the Aufbau principle and Hund’s rule:

Add in two more electrons to the lowest open MO for the charge:

$$BO = \frac{6 - 4}{2} = 1$$

The peroxide ion has a single bond and is diamagnetic!

<table>
<thead>
<tr>
<th>Large 2s–2p interaction</th>
<th>Small 2s–2p interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_2</td>
<td>C_2</td>
</tr>
<tr>
<td>$\sigma 2p$</td>
<td></td>
</tr>
<tr>
<td>$\pi 2p$</td>
<td></td>
</tr>
<tr>
<td>$\sigma 2p$</td>
<td></td>
</tr>
<tr>
<td>$\pi 2p$</td>
<td></td>
</tr>
<tr>
<td>$\sigma 3s$</td>
<td></td>
</tr>
<tr>
<td>$\sigma 2s$</td>
<td></td>
</tr>
</tbody>
</table>

Bond order

<table>
<thead>
<tr>
<th>Bond energy (kJ/mol)</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond length (Å)</td>
<td>1.59</td>
<td>1.38</td>
<td>1.10</td>
</tr>
<tr>
<td>Magnetic behavior</td>
<td>Paramagnetic</td>
<td>Diamagnetic</td>
<td>Diamagnetic</td>
</tr>
</tbody>
</table>

Bonding notes 142