Which element has the electron configuration: 1s\(^2\)2s\(^2\)2p\(^6\)3s\(^2\)3p\(^3\)

A 3% nitrogen
B 1% vanadium
C 0% selenium
D 96% phosphorous
2. What is the electron configuration for Mn$^{2+}$?

A. $[\text{Ar}] 4s^23d^3$
B. $[\text{Ar}] 3d^5$
C. $[\text{Ar}] 3d^34s^2$
D. $[\text{Ar}] 3d^54s^2$

3. The change in energy for the following reaction is referred to as the ________ for fluorine.

$$\text{F}(g) + e^- \rightarrow \text{F}^-(g)$$

A. 26% electronegativity energy
B. 37% electron affinity
C. 37% first ionization energy

4. Which pair of atoms would you expect to form a covalent bond?

A. 10% calcium and oxygen
B. 3% sulfur and sodium
C. 28% chromium and fluorine
D. 59% iodine and carbon
5. Rank the following by increasing electronegativity:
Ca, F & N

A 3% N < Ca < F
B 23% F < N < Ca
C 73% Ca < N < F
D 1% F < Ca < N
6. How many valence electrons does the element germanium have?

A. 13% 2
B. 74% 4
C. 6% 6
D. 7% 14

7. Consider CO2:
 How many electrons are needed by the molecule?
 How many electrons are available to the molecule for bonding?

A. 17% 24, 8
B. 13% 16, 24
C. 70% 24, 16
What is the formal charge on the oxygen atom in the molecule below?

\[\text{FC} = V - \left(\frac{B - L}{2} \right) \]

<table>
<thead>
<tr>
<th>Option</th>
<th>Percentage</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>84%</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>5%</td>
<td>+1</td>
</tr>
<tr>
<td>C</td>
<td>7%</td>
<td>-1</td>
</tr>
<tr>
<td>D</td>
<td>4%</td>
<td>-2</td>
</tr>
</tbody>
</table>
9. Does carbon dioxide exhibit resonance?

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>13%</td>
<td>yes</td>
</tr>
<tr>
<td>B</td>
<td>87%</td>
<td>no</td>
</tr>
</tbody>
</table>