Multiple Choice

1. Place the following cations in order from lowest to highest hydration enthalpy.

2. Which one of the following molecules will exhibit dipole-dipole intermolecular forces as a pure liquid?
 a. C₂H₂ b. SO₃ c. CO₂ d. F₂ e. NO₂

3. Hydrogen bonding is present in all of the following molecular solids EXCEPT ____.
 a. H₂SO₄ b. NH₃ c. PH₃ d. HF e. H₂O₂

4. As pure molecular solids, which of the following exhibits dipole-dipole intermolecular forces: HCl, Cl₂, SCl₂, and CCl₄?
 a. HCl only b. HCl and Cl₂ c. HCl and SCl₂ d. Cl₂ and CCl₄ e. SCl₂ and CCl₄

5. Arrange H₂O, H₂S, and H₂Se in order from lowest to highest boiling point.
 a. H₂O < H₂S < H₂Se b. H₂O < H₂Se < H₂S c. H₂Se < H₂O < H₂S d. H₂Se < H₂S < H₂O e. H₂S < H₂Se < H₂O

6. As pure molecular solids, which of the following exhibit only induced dipole/induced dipole forces: O₂, CH₂Cl₂, and SO₂?
 a. O₂ only b. CH₂Cl₂ only c. SO₂ only d. O₂ and CH₂Cl₂ e. O₂ and SO₂

7. Which one of the following molecules has the lowest boiling point?
 a. CH₄ b. CHCl₃ c. CH₂Cl₂ d. CH₃Cl e. CCl₄

8. List all the intermolecular forces present in pure acetone.
 a. hydrogen bonding only b. dipole-dipole force only c. dipole-dipole force and induced dipole/induced dipole force d. hydrogen bonding and induced dipole/induced dipole force e. hydrogen bonding, dipole-dipole force, and induced dipole/induced dipole force

9. Which of the following liquids has the smallest enthalpy of vaporization?

10. At its boiling point of –34.0 °C, 6.33 kJ of heat is required to vaporize 22.0 g of chlorine (Cl₂). What is the molar enthalpy of vaporization of chlorine?
 a. 0.0893 kJ/mol b. 0.286 kJ/mol c. 1.96 kJ/mol d. 20.4 kJ/mol e. 139 kJ/mol
11. A linear relationship exists between the natural logarithm of the vapor pressure of a gas and the reciprocal of its temperature (in kelvin). What is the slope of the line?

a. $\frac{RT}{\Delta_{vap} H}$
b. $-R \times \Delta_{vap} H$
c. T
d. $-\Delta_{vap} H$
e. $\frac{\Delta_{vap} H}{R}$

12. Which of the following properties of water can be attributed to hydrogen bonding?

1. high melting point
2. high heat of vaporization
3. low vapor pressure
4. high surface tension

a. 1 and 3
b. 2 and 3
c. 2, 3, and 4
d. 1, 3, and 4
e. 1, 2, 3, and 4

13. The toughness of the skin of a liquid is a measure of its ___.

a. meniscus quality
b. adhesive forces
c. dispersion forces
d. viscosity
e. surface tension

14. Which statement concerning the phase diagram below is INCORRECT?

a. Only the solid phase exists at point A.
b. At point D, the triple point, all three phases (gas, liquid, and solid) are in equilibrium.
c. Moving from point A to B results in a phase transition from solid to liquid.
d. At point C, the solid and liquid phases are in equilibrium.
e. Only the liquid phase exists at point B.

15. If a pure substance begins at point B on the phase diagram below and the pressure on the substance is reduced until point C is reached, what process occurs?

a. fusion
b. vaporization
c. condensation
d. sublimation
e. none of these
16. What process occurs when a substance is at point B on the phase diagram below, and the temperature is decreased (under constant pressure) until the substance is at point A?

- condensation
- vaporization
- sublimation
- melting
- freezing

17. What process occurs when a substance is at point C on the phase diagram below, and the pressure is increased (under constant temperature) until the substance is at point B?

- condensation
- vaporization
- sublimation
- melting
- freezing

18. What is the definition of molality?

- moles of solute per kg of solvent
- grams of solute per kg of solution
- grams of solute per liter of solution
- moles of solute per liter of solvent
- moles of solute per liter of solution

19. If 355 g of ethanol (C₂H₅OH) is added to 645 g of water, what is the molality of the ethanol?

- 0.550 m
- 7.71 m
- 11.9 m
- 21.7 m
- 55.0 m

20. What is the mole fraction of water in a solution that is 37.9% by weight ethylene glycol? The molar mass of ethylene glycol, HOCH₂CH₂OH, is 62.07 g/mol.

- 0.177
- 0.379
- 0.849
- 0.901
- 5.63

21. Concentrated sodium hydroxide is 19.4 M and has a density of 1.54 g/mL. What is the molality of concentrated NaOH?

- 12.6 m
- 19.8 m
- 25.4 m
- 29.9 m
- 50.4 m

22. Which of the following statements is/are CORRECT?

1. Solubility is defined as the concentration of solute in equilibrium with undissolved solute in a saturated solution.
2. If two liquids mix to an appreciable extent to form a solution, they are miscible.
3. If two liquids mix completely in any proportion to form a solution, the resulting solution is supersaturated.

- 1 only
- 2 only
- 3 only
- 1 and 2
- 2 and 3
23. In which solvent should Na⁺ have the most negative enthalpy of solvation?
 a. CCl₄ b. H₂O c. C₆H₆ d. CS₂ e. C₆H₁₄

24. The vapor pressure of pure water at 55 °C is 118 mm Hg. What is the equilibrium vapor pressure of water above a mixture of 77.0 g ethanol (CH₃CH₂OH, molar mass = 46.07 g/mol) and 32.0 g water?
 a. 2.72 mm Hg b. 34.6 mm Hg c. 49.0 mm Hg d. 57.2 mm Hg e. 60.8 mm Hg

25. Which of the following aqueous solutions should have the lowest freezing point?
 a. pure H₂O b. 1 m MgBr₂ c. 1 m Rbl d. 1 m NH₃ e. 1 m C₆H₁₂O₆

26. Which of the following aqueous solutions should have the highest boiling point?
 a. 0.50 m NaBr b. 0.50 m K₂SO₄ c. 0.50 m CaBr₂ d. 1.0 m KCl e. 1.5 m C₆H₁₂O₆

27. What is the freezing point of a solution containing 3.10 grams benzene (molar mass = 78.11 g/mol) dissolved in 32.0 grams paradichlorobenzene? The freezing point of pure paradichlorobenzene is 53.0 °C and the freezing point depression constant, K_{fp}, is –7.10 °C/m.
 a. 44.2 °C b. 51.8 °C c. 52.3 °C d. 54.2 °C e. 61.8 °C

28. What is the molar mass of a nonpolar molecular compound if 3.42 grams dissolved in 41.8 grams benzene begins to freeze at 1.17 °C? The freezing point of pure benzene is 5.50 °C and the freezing point depression constant, K_{fp}, is –5.12 °C/m.
 a. 2.89 g/mol b. 69.2 g/mol c. 96.7 g/mol d. 126 g/mol e. 358 g/mol

29. What concentration unit is used in the calculation of osmotic pressure for a dilute solution?
 a. molality b. weight percent c. mass fraction d. mole fraction e. molarity

30. A solution is prepared by dissolving 4.78 g of an unknown nonelectrolyte in enough water to make 375 mL of solution. The osmotic pressure of the solution is 1.33 atm at 27 °C. What is the molar mass of the solute? (R = 0.08206 L·atm/mol·K)
 a. 0.0203 g/mol b. 21.2 g/mol c. 49.4 g/mol d. 96.8 g/mol e. 236 g/mol

31. Which relationship correctly compares the rates of the following reactants and products?
 \[\frac{\Delta [C_3H_8]}{\Delta t} = \frac{\Delta [O_2]}{\Delta t} = \frac{\Delta [CO_2]}{\Delta t} = \frac{\Delta [H_2O]}{\Delta t} \]
 a. \[\frac{\Delta [C_3H_8]}{\Delta t} = \frac{\Delta [O_2]}{\Delta t} = \frac{\Delta [CO_2]}{\Delta t} = \frac{\Delta [H_2O]}{\Delta t} \]
 b. \[\frac{\Delta [C_3H_8]}{\Delta t} = \frac{\Delta [O_2]}{\Delta t} = \frac{-\Delta [CO_2]}{\Delta t} = \frac{-\Delta [H_2O]}{\Delta t} \]
 c. \[\frac{\Delta [C_3H_8]}{\Delta t} = \frac{-\Delta [O_2]}{5 \Delta t} = \frac{\Delta [CO_2]}{3 \Delta t} = \frac{\Delta [H_2O]}{4 \Delta t} \]
 d. \[\frac{\Delta [C_3H_8]}{\Delta t} = \frac{5\Delta [O_2]}{\Delta t} = \frac{3\Delta [CO_2]}{\Delta t} = \frac{4\Delta [H_2O]}{\Delta t} \]
 e. \[\frac{\Delta [C_3H_8]}{\Delta t} = \frac{5\Delta [O_2]}{\Delta t} = \frac{3\Delta [CO_2]}{\Delta t} = \frac{4\Delta [H_2O]}{\Delta t} \]
32. An aqueous solution of hydrogen peroxide decomposes to oxygen and water according to the balanced chemical equation below.

\[2 \text{H}_2\text{O}_2(\text{aq}) \rightarrow \text{O}_2(\text{g}) + 2 \text{H}_2\text{O}(\ell) \]

If the rate of disappearance of hydrogen peroxide is \(-3.8 \times 10^{-5}\) M/s, what is the rate of formation of oxygen?

a. \(-3.8 \times 10^{-5}\) M/s b. \(1.9 \times 10^{-5}\) M/s c. \(3.8 \times 10^{-5}\) M/s d. \(6.2 \times 10^{-3}\) M/s e. \(7.6 \times 10^{-5}\) M/s

33. What is the name given to a substance that increases the rate of a chemical reaction but is not itself consumed?

a. catalyst b. reactant c. intermediate d. product e. rate constant

34. What is the overall order of the reaction below

\[2 \text{NO}(\text{g}) + \text{O}_2(\text{g}) \rightarrow 2 \text{NO}_2(\text{g}) \]

if it proceeds via the following rate expression?

\[\frac{\Delta [\text{NO}]}{\Delta t} = k[\text{NO}]^2[\text{O}_2] \]

a. zero-order b. first-order c. second-order d. third-order e. fourth-order

35. Given the initial rate data for the reaction \(2\text{A} + \text{B} \rightarrow \text{C}\), determine the rate expression for the reaction.

<table>
<thead>
<tr>
<th>[A], M</th>
<th>[B], M</th>
<th>(\Delta [\text{C}] / \Delta t) (initial) M/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.180</td>
<td>0.250</td>
<td>(1.36 \times 10^{-3})</td>
</tr>
<tr>
<td>0.180</td>
<td>0.500</td>
<td>(2.72 \times 10^{-3})</td>
</tr>
<tr>
<td>0.720</td>
<td>0.500</td>
<td>(1.09 \times 10^{-2})</td>
</tr>
</tbody>
</table>

a. \(\frac{\Delta [\text{C}]}{\Delta t} = 1.21 \times 10^{-1} \text{M}^{-1}\text{s}^{-1} [\text{A}][\text{B}]^2\) b. \(\frac{\Delta [\text{C}]}{\Delta t} = 3.02 \times 10^{-2} \text{M}^{-2}\text{s}^{-1} [\text{A}]^2[\text{B}]\)

c. \(\frac{\Delta [\text{C}]}{\Delta t} = 1.68 \times 10^{-1} \text{M}^{-1}\text{s}^{-1} [\text{A}]^2[\text{B}]\) d. \(\frac{\Delta [\text{C}]}{\Delta t} = 1.36 \times 10^{-3} \text{M}^{-1}\text{s}^{-1} [\text{A}][\text{B}]\)

e. \(\frac{\Delta [\text{C}]}{\Delta t} = 3.02 \times 10^{-2} \text{M}^{-1}\text{s}^{-1} [\text{A}][\text{B}]\)

36. For the reaction \(\text{A} + 2\text{B} \rightarrow \text{C}\), the rate law is

\[\frac{\Delta [\text{C}]}{\Delta t} = k[\text{A}][\text{B}] \]

What are the units of the rate constant where time is measured in seconds?

a. \(\frac{1}{\text{M} \cdot \text{s}}\) b. \(\frac{1}{\text{M}^2 \cdot \text{s}}\) c. \(\frac{1}{\text{s}}\) d. \(\frac{\text{M}^2}{\text{s}}\) e. \(\frac{\text{M}}{\text{s}}\)

37. The reaction of NO and O\(_2\) produces NO\(_2\).

\[2 \text{NO}(\text{g}) + \text{O}_2(\text{g}) \rightarrow 2 \text{NO}_2(\text{g}) \]

The reaction is second-order with respect to NO(g) and first-order with respect to O\(_2\)(g). At a given temperature, the rate constant, \(k\), equals \(7.4 \times 10^2 \text{M}^{-2}\text{s}^{-1}\). What is the rate of reaction when the initial concentrations of NO and O\(_2\) are 0.030 M and 0.025 M, respectively?

a. \(1.7 \times 10^{-2}\) M/s b. \(0.56\) M/s c. \(1.1\) M/s d. \(4.9 \times 10^3\) M/s e. \(3.3 \times 10^7\) M/s
38. How are the exponents in a rate law determined?
 a. They are equal to one for gas phase reactants and zero for solid phase reactants.
 b. They are determined by experimentation.
 c. They are equal to the coefficients in the overall balanced chemical equation.
 d. They are equal to the reactant concentrations.
 e. They are equal to one for gas phase reactions and two for aqueous reactions.

39. For a second-order decomposition reaction,
 \[2A \rightarrow B\] \[\text{rate} = k[A]^2\]
 which of the following functions can be plotted versus time to give a straight line?
 a. \([A]\) b. \(\frac{k}{[A]^2}\) c. \(\ln \left(\frac{1}{[A]}\right)\) d. \(\ln[A]\) e. \(\frac{1}{[A]}\)

40. For a reaction, \(A \rightarrow B + C\), which of the following equations corresponds to the integrated expression for a first-order decomposition reaction?
 a. \([A]_t = -kt + [A]_0\) b. \(\ln \left(\frac{[A]}{[A]_0}\right) = -kt\) c. \(\ln[A]_t = \ln[-kt] + \ln[A]_0\) d. \(\frac{[A]_t}{[A]_0} = -kt\)
 e. \(\frac{1}{[A]}_t = kt + \frac{1}{[A]_0}\)

41. The rate constant of a first-order decomposition reaction is 0.0456 hrs\(^{-1}\). If the initial concentration of reactant is 0.072 M, what is the concentration of reactant after 27.0 hours?
 a. 0.0033 M b. 0.021 M c. 0.071 M d. 0.58 M e. 0.25 M

42. For a reaction, \(A \rightarrow B + C\), which of the following equations corresponds to the integrated expression for a zero-order decomposition reaction?
 a. \([A]_t = -kt + [A]_0\) b. \(\ln[A]_t = -kt + \ln[A]_0\) c. \(\frac{1}{[A]}_t = kt + \frac{1}{[A]_0}\) d. \(\frac{[A]_t}{[A]_0} = -kt\) e. \(\ln \left(\frac{[A]}{[A]_0}\right) = -kt\)

43. The reaction \(A \rightarrow B\) follows first-order kinetics with a half-life of 14.3 days. If the concentration of A is 0.024 M after 3.25 days, what is the initial concentration of A?
 a. 0.11 M b. 0.021 M c. 0.028 M d. 0.030 M e. 0.041 M

44. The decomposition of phosphine, \(\text{PH}_3\), follows first-order kinetics.
 \[4 \text{PH}_3(g) \rightarrow P_4(g) + 6 \text{H}_2(g)\]
 The half-life for the reaction at 550 \(^\circ\)C is 81.3 seconds. What percentage of phosphine remains after 275 seconds?
 a. 2.3% b. 9.6% c. 26% d. 30% e. 74%

45. The Arrhenius equation, \(k = A e^{-E_a/RT}\), relates the rate constant of reaction and temperature. A plot of \(\ln(k)\) versus \(1/T\) will yield a straight line with a slope of ______.
 a. \(-E_a/R\) b. \(-E_a\) c. \(A\) d. \(e^{-E_a/R}\) e. \(1/RT\)
46. Calculate the activation energy, E_a, for

$$\text{N}_2\text{O}_5(\text{g}) \rightarrow 2 \text{NO}_2(\text{g}) + 1/2 \text{O}_2(\text{g})$$

given k (at 45.0 °C) = 5.79×10^{-4} s$^{-1}$ and k (at 60.0 °C) = 3.83×10^{-3} s$^{-1}$. ($R = 8.314 \text{ J/K mol}$)

a. 0.256 kJ/mol
 b. 2.83 kJ/mol
 c. 31.1 kJ/mol
 d. 111 kJ/mol
 e. 389 kJ/mol

47. The effect of adding a catalyst to a reaction is to

a. increase the number of collisions between reactants.
 b. lower the activation energy of a reaction.
 c. increase the equilibrium constant of a reaction.
 d. decrease the yield of the products.
 e. increase the enthalpy change of a reaction.

48. The elementary steps for the catalyzed decomposition of dinitrogen monoxide are shown below.

$$\text{N}_2\text{O}(\text{g}) + \text{NO}(\text{g}) \rightarrow \text{N}_2(\text{g}) + \text{NO}_2(\text{g})$$
$$2 \text{NO}_2(\text{g}) \rightarrow 2 \text{NO}(\text{g}) + \text{O}_2(\text{g})$$

Which of the following statements is/are CORRECT?

1. The overall balanced reaction is $2 \text{N}_2\text{O}(\text{g}) \rightarrow 2 \text{N}_2(\text{g}) + \text{O}_2(\text{g})$.
2. NO(g) is a catalyst for the reaction.
3. NO$_2$(g) is a reaction intermediate.

a. 1 only
 b. 2 only
 c. 3 only
 d. 1 and 3
 e. 1, 2, and 3

Short Answer

49. _______ is a measure of the degree to which the electron cloud surrounding an atom or molecule can be distorted in an electric field.

50. Which ion, K$^+$ or Ca$^{2+}$, is expected to have the more negative enthalpy of hydration? Why?

51. The following equation is known as _______ law: $P_{\text{solvent}} = X_{\text{solvent}} P_{\text{solvent}}^*$.

52. A solution in which there is more dissolved solute than in a saturated solution is known as a(n) _______ solution.

53. If a catalyst is present in the same phase as the reactants and products, it is referred to as a(n) _______ catalyst.

54. Radioactive isotopes decay by _______-order kinetics.

55. Elementary steps in a reaction mechanism often include reaction _______. These (usually) short-lived species, which are at one point produced and then later consumed, do not appear in the overall chemical reaction.
MULTIPLE CHOICE

1. ANS: C TOP: 12.2 Intermolecular Forces Involving Polar Molecules
2. ANS: E TOP: 12.2 Intermolecular Forces Involving Polar Molecules
3. ANS: C TOP: 12.2 Intermolecular Forces Involving Polar Molecules
4. ANS: C TOP: 12.2 Intermolecular Forces Involving Polar Molecules
5. ANS: E TOP: 12.2 Intermolecular Forces Involving Polar Molecules
6. ANS: A TOP: 12.3 Interactions Involving Nonpolar Molecules
7. ANS: A TOP: 12.3 Interactions Involving Nonpolar Molecules
8. ANS: C TOP: 12.3 Interactions Involving Nonpolar Molecules
9. ANS: D TOP: 12.4 Properties of Liquids
10. ANS: D TOP: 12.4 Properties of Liquids
11. ANS: E TOP: 12.4 Properties of Liquids
12. ANS: E TOP: 12.4 Properties of Liquids
13. ANS: E TOP: 12.4 Properties of Liquids
14. ANS: D TOP: 13.6 Phase diagrams
15. ANS: B TOP: 13.6 Phase diagrams
16. ANS: E TOP: 13.6 Phase diagrams
17. ANS: A TOP: 13.6 Phase diagrams
18. ANS: A TOP: 14.1 Units of Concentration
19. ANS: C TOP: 14.1 Units of Concentration
20. ANS: C TOP: 14.1 Units of Concentration
21. ANS: C TOP: 14.1 Units of Concentration
22. ANS: D TOP: 14.2 The Solution Process
23. ANS: B TOP: 14.2 The Solution Process
24. ANS: E TOP: 14.4 Colligative Properties
25. ANS: B TOP: 14.4 Colligative Properties
26. ANS: D TOP: 14.4 Colligative Properties
27. ANS: A TOP: 14.4 Colligative Properties
28. ANS: C TOP: 14.4 Colligative Properties
29. ANS: E TOP: 14.4 Colligative Properties
30. ANS: E TOP: 14.4 Colligative Properties
31. ANS: C TOP: 15.1 Rates of Chemical Reactions
32. ANS: B TOP: 15.1 Rates of Chemical Reactions
33. ANS: A TOP: 15.2 Reaction Conditions and Rate
34. ANS: D TOP: 15.3 Effect of Concentration on Reaction Rate
35. ANS: E TOP: 15.3 Effect of Concentration on Reaction Rate
36. ANS: A TOP: 15.3 Effect of Concentration on Reaction Rate
37. ANS: A TOP: 15.3 Effect of Concentration on Reaction Rate
38. ANS: B TOP: 15.3 Effect of Concentration on Reaction Rate
39. **ANS:** E
 TOP: 15.4 Concentration-Time Relationships: Integrated Rate Laws
30. **ANS:** B
 TOP: 15.4 Concentration-Time Relationships: Integrated Rate Laws
41. **ANS:** B
 TOP: 15.4 Concentration-Time Relationships: Integrated Rate Laws
42. **ANS:** A
 TOP: 15.4 Concentration-Time Relationships: Integrated Rate Laws
43. **ANS:** C
 TOP: 15.4 Concentration-Time Relationships: Integrated Rate Laws
44. **ANS:** B
 TOP: 15.4 Concentration-Time Relationships: Integrated Rate Laws
45. **ANS:** A
 TOP: 15.5 A Microscopic View of Reaction Rates
46. **ANS:** D
 TOP: 15.5 A Microscopic View of Reaction Rates
47. **ANS:** B
 TOP: 15.5 A Microscopic View of Reaction Rates
48. **ANS:** E
 TOP: 15.6 Reaction Mechanisms

SHORT ANSWER

49. **ANS:**
 Polarizability
50. **ANS:**
 Ca	extsuperscript{2+} will have the more negative enthalpy of hydration. A calcium ion is smaller than a potassium ion. The smaller ion will bond more closely to water's dipole, allowing for a stronger ion-dipole interaction. In addition, the greater the charge on the ion, the greater the ion-dipole interaction.
51. **ANS:**
 Raoult's
52. **ANS:**
 supersaturated
53. **ANS:**
 homogeneous
54. **ANS:**
 first
55. **ANS:**
 intermediates