Practice Problems for Chem. 1B Exam 1 F2011 These represent the concepts covered for exam 1. There may be some additional net ionic equations from chem. 1A. This is not the exact exam!

Sections 16.1-16.3

a) b) C) d)

- 1. Which of the following statements is/are CORRECT?
 - 1. For a chemical system, if the reaction quotient (Q) is greater than K, products must be converted to reactants to reach equilibrium.
 - 2. For a chemical system at equilibrium, the forward and reverse rates of reaction are equal.
 - 3. For a chemical system at equilibrium, the concentrations of products divided by the concentrations of reactants equals one.
 - b) 2 only c) 3 only d) 1 and 2 e) 1, 2, and 3 a) 1 only
- 2. Write a balanced chemical equation which corresponds to the following equilibrium constant expression.

$$K_{\rm p} = \frac{P_{\rm N_2}^{1/2} P_{\rm H_2}^{3/2}}{P_{\rm NH_3}}$$

a) 1/2 N₂(g) + 3/2 H₂(g) \leftrightarrow NH₃(g)
b) N₂(g) + 3 H₂(g) \leftrightarrow 2 NH₃(g)
c) 2 NH₃(g) \leftrightarrow N₂(g) + 3 H₂(g)
d) NH₃(g) \leftrightarrow 1/2 N₂(g) + 3/2 H₂(g)
e) 2 N₂(g) + 6 H₂(g) \leftrightarrow 4 NH₃(g)

3. A 5.0 L flask is filled with 0.25 mol SO₃, 0.50 mol SO₂, and 1.0 mol O₂, and allowed to reach equilibrium. Assume the temperature of the mixture is chosen so that K = 0.12. Predict the effect on the concentration of SO_3 as equilibrium is achieved by using Q, the reaction quotient.

 $2 SO_3(g) \leftrightarrow 2 SO_2(g) + O_2(g)$

- a) $[SO_3]$ will decrease because Q > K.
- b) $[SO_3]$ will decrease because Q < K.
- c) [SO₃] will increase because Q < K.
- d) $[SO_3]$ will increase because Q > K.
- e) $[SO_3]$ will remain the same because Q = K.
- 4. Excess PbBr₂(s) is placed in water at 25°C. At equilibrium, the solution contains 0.012 M Pb²⁺(aq). What is the equilibrium constant for the reaction below?

PbBr₂(s) ↔ Pb²⁺(aq) + 2 Br⁻(aq) ⁷ b) 1.7 × 10⁻⁶ c) 6.9 c) 6.9×10^{-6} d) 1.4×10^{-4} e) 2.9×10^{-4} a) 4.3 × 10⁻⁷

5. When 0.50 mole CH₃CO₂H is dissolved in water to a volume of 1.00 L, 0.60% of the CH₃CO₂H dissociates to form CH_3CO_2 (aq). What is the equilibrium constant for the reaction?

 $CH_3CO_2H(aq) + H_2O(I) \leftrightarrow CH_3CO_2(aq) + H_3O^+(aq)$ a) 1.8 × 10⁻⁵ b) 3.6 × 10⁻⁵ d) 6.0×10^{-3} c) 3.0 × 10⁻³ e) 0.45

Sections 16.4-16.6

- 6. If a stress is applied to an equilibrium system, the system will respond is such a way as to relieve that stress. This is a statement :
 - a) Le Chatelier's principle
 - b) Law of conservation of Mass
 - c) 2nd Law of Thermodynamics
 - d) None of the above
- 7. Consider the reaction below

2NOCI (g) \leftrightarrow 2NO (g) + Cl₂ (g) $\Delta_r H^\circ$ = + 77.1 kJ/mol-rxn

How does [NOCI] change by a decrease in the temperature?

- a) No change
- b) NOCI decreases
- c) NOCI increases
- d) None of the above
- 8. A gaseous mixture of NO₂ and N₂O₄ is in equilibrium. If the concentration of N₂O₄ is 5.3×10^{-5} M, what is the concentration of NO₂?

 $2 \text{ NO}_2(\overline{g}) \leftrightarrow \text{N}_2\text{O}_4(g) \qquad K_c = 170$ a) $9.7 \times 10^{-14} \text{ M}$ b) $3.1 \times 10^{-7} \text{ M}$ c) $5.6 \times 10^{-4} \text{ M}$ d) $9.0 \times 10^{-3} \text{ M}$ e) $9.5 \times 10^{-2} \text{ M}$

9. The equilibrium constant at 25 °C for the dissolution of silver iodide is 8.5×10^{-17} .

 $Agl(s) \leftrightarrow Ag^{+}(aq) + I(aq)$

If an excess quantity of AgI(s) is added to water and allowed to equilibrate, what is the equilibrium concentration of I?

a) 7.2×10^{-33} M b) 4.3×10^{-17} M c) 8.5×10^{-17} M d) 6.5×10^{-9} M e) 9.2×10^{-9} M

10. Carbonyl bromide decomposes to carbon monoxide and bromine.

 $\begin{array}{rl} \text{COBr}_2(g) \leftrightarrow \text{CO}(g) + \text{Br}_2(g) \\ \text{\mathcal{K}_c is 0.19 at 73 °C. If an initial concentration of 0.63 M COBr}_2$ is allowed to equilibrate, what is the equilibrium concentration of COBr}_2? \\ \text{a) } 0.26 \text{ M} & \text{b) } 0.28 \text{ M} & \text{c) } 0.35 \text{ M} & \text{d) } 0.37 \text{ M} & \text{e) } 0.40 \text{ M} \end{array}$

11. For the following reaction,

 $SO_2(g) + 1/2 O_2(g) \leftrightarrow SO_3(g)$

the equilibrium constant, K_{p} , is 0.870 at 627 °C. What is the equilibrium constant, at 627 °C, for the reaction below?

- 12. Assume that the following chemical reaction is at equilibrium.
 - $2 \operatorname{ICl}(g) \leftrightarrow I_2(g) + \operatorname{Cl}_2(g) \qquad \Delta H^\circ = +26.9 \operatorname{kJ}$
 - At 25 °C, $K_p = 2.0 \times 10^5$. If the temperature is decreased to 5 °C, which statement applies?
 - a) K_p will decrease and the reaction will proceed in the backward direction.
 - b) K_p will decrease and the reaction will proceed in the forward direction.
 - c) K_{p} will remain unchanged and the reaction will proceed in the forward direction.
 - d) K_p will remain unchanged and the reaction will proceed in the backward direction.
 - e) K_{p} will increase and the reaction will proceed in the forward direction.
- 13. In which of the following equilibrium systems will an increase in the pressure have no effect on the concentrations of products and reactants?
 - a) $H_2(g) + F_2(g) \leftrightarrow 2 HF(g)$ b) $N_2(g) + 3 H_2(g) \leftrightarrow NH_3(g)$ c) $CaCO_3(s) \leftrightarrow CaO(s) + CO_2(g)$ d) $2 NOBr(g) \leftrightarrow 2 NO(g) + Br_2(g)$ e) $2 H_2O(g) + O_2(g) \leftrightarrow 2 H_2O_2(g)$

Sections 17.1-17.8

- 14. Which of the following substances is never a Brønsted-Lowry acid in an aqueous solution?
 - a) hydrogen fluoride, HF(g)
 - b) sodium phosphate, $Na_3PO_4(s)$
 - c) ammonium chloride, $NH_4Cl(s)$
 - d) hydrogen bromide, HBr(g)
 - e) sodium bicarbonate, $NaHCO_3(s)$
- 15. Which equation depicts dihydrogen phosphate ion behaving as a Brønsted-Lowry base in water?

a) $H_2PO_4^{-}(aq) + H_2O(I) \leftrightarrow H_3PO_4(aq) + OH^{-}(aq)$ b) $H_2PO_4^{-}(aq) + OH^{-}(aq) \leftrightarrow HPO_4^{-2-}(aq) + H_2O(I)$ c) $H_2PO_4^{-}(aq) + H_2O(I) \leftrightarrow HPO_4^{-2-}(aq) + H_3O^{+}(aq)$ d) $H_2PO_4^{-}(aq) + O^{2-}(aq) \leftrightarrow PO_4^{-3-}(aq) + H_2O(I)$ e) $H_2PO_4(aq) + H_2O(l) \leftrightarrow 2 H_2O(l) + PO_3(s)$

16. What is the conjugate base of $[Fe(H_2O)_6]^{3+}(aq)$?

a) H_3O^+ b) $[Fe(H_2O)_6]^{2+}$

- c) $[Fe(H_2O)_5H_3O]^{4+}$
- d) $[Fe(H_2O)_5OH]^{2+}$
- e) $[Fe(H_2O)_5]^{3+}$
- 17. At 20 °C, the water ionization constant, K_w , is 6.8×10^{-15} . What is the H₃O⁺ concentration in neutral water at this temperature? a) 4.6×10^{-29} M b) 3.4×10^{-15} M c) 6.8×10^{-15} M d) 8.2×10^{-8} M e) 1.0×10^{-7} M
- 18. What is the OH⁻ concentration of an aqueous solution with a pH of 4.45? ($K_w = 1.0 \times 10^{-14}$) a) 2.8 × 10⁻¹⁰ M b) 3.5 × 10⁻⁵ M c) 7.1 × 10⁻⁵ M d) 9.55 M e) 2.8 × 10⁴ M
- 19. Which of the following chemical equations corresponds to the acid ionization constant, K_a , for ammonium ion (NH_4^+) ?

a) $NH_3(aq) + H_3O^{+}(aq) \leftrightarrow NH_4^{+}(aq) + H_2O(I)$ b) $NH_4^{+}(aq) + H_2O(I) \leftrightarrow NH_3(aq) + H_3O^{+}(aq)$ c) $NH_4^{+}(aq) + OH^{-}(aq) \leftrightarrow NH_3(aq) + H_2O(I)$ d) $NH_4^{+}(aq) + H_3O^{+}(aq) \leftrightarrow NH_5^{+}(aq) + H_2O(I)$ e) $NH_3(aq) + H_2O(I) \leftrightarrow NH_4^{+}(aq) + OH^{-}(aq)$

- 20. Which of the following weak acids has the strongest conjugate base in an aqueous solution? a) acetic acid, $K_a = 1.8 \times 10^{-5}$
 - b) hydrocyanic acid, $K_a = 4.0 \times 10^{-10}$
 - c) hydrogen sulfite ion, $K_a = 6.2 \times 10^{-8}$
 - d) nitrous acid, $K_a = 4.5 \times 10^{-4}$
 - e) phosphoric acid, $K_a = 7.5 \times 10^{-3}$
- 21. At 25 °C, all of the following ionic compounds produce a basic aqueous solution, except _____.a) KClO4b) Na2CO3c) NaNO2d) KCNe) NaCH3CO2
- 22. What is the net ionic equation for the reaction of aqueous calcium acetate and aqueous sodium carbonate?
 a) Ca²⁺(aq) + 2 CH₃CO₂⁻(aq) → Ca(CH₃CO₂)₂(s)
 b) Na⁺(aq) + CH₃CO₂⁻(aq) → NaCH₃CO₂(aq)
 c) Na⁺(aq) + CH₃CO₂⁻(aq) → NaCH₃CO₂(s)
 d) Ca²⁺(aq) + CO₃²⁻(aq) → CaCO₃(s)
 e) Ca²⁺(aq) + 2 Na⁺(aq) → CaNa₂(s)
- 23. What is the net ionic equation for the reaction of aqueous sodium hydroxide and aqueous iron(II) chloride?
 a) Na⁺(aq) + OH⁻(aq) → NaOH(s)
 b) Na⁺(aq) + CI⁻(aq) → NaCI(s)
 c) Fe²⁺(aq) + 2 OH⁻(aq) → Fe(OH)₂(s)
 d) Fe²⁺(aq) + OH⁻(aq) → FeOH⁺(s)
 e) Fe²⁺(aq) + 2 CI⁻(aq) → FeCI₂(s)
- 24. What is the OH⁻ concentration in 0.48 M F⁻(aq)? (K_b of F⁻ = 1.4 × 10⁻¹¹) a) 6.7 × 10⁻¹² M b) 1.4 × 10⁻¹¹ M c) 3.9 × 10⁻⁹ M d) 1.7 × 10⁻⁶ M e) 2.6 × 10⁻⁶ M
- 25. What is the pH of the solution which results from mixing 150 mL of 0.50 M CH₃CO₂H(aq) and 150 mL of 0.50 M NaOH(aq) at 25 °C? (K_a of CH₃CO₂H = 1.8 × 10⁻⁵) a) 2.67 b) 4.74 c) 4.93 d) 8.26 e) 9.07
- 26. What is the pH of 1.0 M Na₂SO₃(aq) at 25 °C? ($K_{a1} = 1.2 \times 10^{-2}$, $K_{a2} = 6.2 \times 10^{-8}$) a) 3.40 b) 6.03 c) 7.96 d) 10.40 e) 10.60

Sections 18.1-18.3

- 27. An acid-base equilibrium system is created by dissolving 0.10 mol HF in water to a volume of 1.0 L. What is the effect of adding 0.050 mol F (aq) to this solution?
 - a) The pH of the solution will decrease.
 - b) Some F⁻(aq) will react with H₃O⁺, increasing the concentration of HF(aq) and reestablishing the solution equilibrium.
 - c) The addition of F⁻(aq) will have no effect on the pH or the concentration of HF(aq).
 - d) Some HF(aq) will ionize, increasing the concentration of $F^{-}(aq)$ and decreasing the pH.
 - e) Some HF(aq) will ionize, increasing the concentration of F(aq) and increasing the pH.
- 28. What is the pH of a solution that results from diluting 0.50 mol formic acid (HCO₂H) and 0.10 mol sodium formate (NaHCO₂) with water to a volume of 1.0 L? (K_a of HCO₂H = 1.8 × 10⁻⁴) a) 2.22 b) 3.05 c) 3.74 d) 3.98 e) 4.44
- 29. What is the pH of a solution that results from adding 25 mL of 0.50 M NaOH to 75 mL of 0.50 M CH₃CO₂H? (K_a of CH₃CO₂H = 1.8 × 10⁻⁵) a) 4.44 b) 4.74 c) 5.05 d) 9.26 e) 13.10
- 30. Which of the following combinations would be best to buffer an aqueous solution at a pH of 4.5? a) H_3PO_4 and $H_2PO_4^-$, $K_{a1} = 7.5 \times 10^{-3}$ b) HNO_2 and NO_2^- , $K_a = 4.5 \times 10^{-4}$ c) CH_3CO_2H and CH_3COO^- , $K_a = 1.8 \times 10^{-5}$ d) $H_2PO_4^-$ and $HPO_4^{-2}^-$, $K_{a2} = 6.2 \times 10^{-8}$ e) NH_4^+ and NH_3 , $K_a = 5.7 \times 10^{-10}$
- 31. What is the pH of the buffer that results when 15.0 g of NaH₂PO₄ and 15.0 g of Na₂HPO₄ are diluted with water to a volume of 0.50 L? (K_a of H₂PO₄⁻ = 6.2 × 10⁻⁸) a) 7.13 b) 7.21 c) 7.28 d) 8.05 e) 8.39
- 32. What mass of solid NaCH₃CO₂ (molar mass = 82.0 g/mol) should be added to 1.0 L of 0.50 M CH₃CO₂H to make a buffer with a pH of 7.21? (p K_a of CH₃CO₂H = 7.21) a) 0.0 g b) 1.9 g c) 41 g d) 71 g e) 1.6 × 10² g
- 33. A volume of 25.0 mL of 0.100 M CH₃CO₂H(aq) is titrated with 0.100 M NaOH(aq). What is the pH after the addition of 12.5 mL of NaOH? (K_a for CH₃CO₂H = 1.8 × 10⁻⁵) a) 3.74 b) 4.74 c) 5.74 d) 7.00 e) 9.26
- 34. A 50.00 mL sample of vinegar is titrated with 0.584 M NaOH(aq). If the titration requires 32.80 mL of NaOH(aq), what is the concentration of acetic acid in the vinegar?
 a) 0.0100 M
 b) 0.0192 M
 c) 0.0292 M
 d) 0.383 M
 e) 0.890 M

35. An impure sample of sodium carbonate, Na₂CO₃, is titrated with 0.123 M HCl according to the reaction below. $2 \text{ HCl}(aq) + \text{Na}_2\text{CO}_3(aq) \leftrightarrow \text{CO}_2(g) + \text{H}_2\text{O}(l) + 2 \text{ NaCl}(aq)$ What is the percent of Na₂CO₃ in a 0.557 g sample if the titration requires 25.30 mL of HCl? The molar mass of Na₂CO₃ is 106.0 g/m ol. a) 0.559% b) 29.6% c) 55.9% d) 59.2% e) 118%

Answers:

1	d	21	а
	d	22	d
2 3	d	23	С
4	С	24	е
5	а	25	е
6	а	26	е
7	С	27	b
8	С	28	b
9	е	29	а
10	d	30	С
11	С	31	а
12	а	32	С
13	а	33	b
14	b	34	d
15	а	35	b
16	d		
17	d		
18	а		
19	b		
20	b		