Practice Problems for Chem. 1B Exam 1 F2011

These represent the concepts covered for exam 1. There may be some additional net ionic equations from chem. 1A.

This is not the exact exam!

Sections 16.1-16.3

1. Which of the following statements is/are CORRECT?
2. For a chemical system, if the reaction quotient (Q) is greater than K, products must be converted to reactants to reach equilibrium.
3. For a chemical system at equilibrium, the forward and reverse rates of reaction are equal.
4. For a chemical system at equilibrium, the concentrations of products divided by the concentrations of reactants equals one.
a) 1 only
b) 2 only
c) 3 only
d) 1 and 2
e) 1, 2, and 3
5. Write a balanced chemical equation which corresponds to the following equilibrium constant expression.

$$
K_{\mathrm{p}}=\frac{P_{\mathrm{N}_{2}}^{1 / 2} P_{\mathrm{H}_{2}}^{3 / 2}}{P_{\mathrm{NH}_{3}}}
$$

a) $1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+3 / 2 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})$
b) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
c) $2 \mathrm{NH}_{3}(\mathrm{~g}) \leftrightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
d) $\mathrm{NH}_{3}(\mathrm{~g}) \leftrightarrow 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+3 / 2 \mathrm{H}_{2}(\mathrm{~g})$
e) $2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 4 \mathrm{NH}_{3}(\mathrm{~g})$
3. A 5.0 L flask is filled with $0.25 \mathrm{~mol} \mathrm{SO}_{3}, 0.50 \mathrm{~mol} \mathrm{SO}_{2}$, and $1.0 \mathrm{~mol} \mathrm{O}_{2}$, and allowed to reach equilibrium. Assume the temperature of the mixture is chosen so that $K=0.12$. Predict the effect on the concentration of SO_{3} as equilibrium is achieved by using Q, the reaction quotient.

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

a) $\left[\mathrm{SO}_{3}\right]$ will decrease because $Q>K$.
b) $\left[\mathrm{SO}_{3}\right]$ will decrease because $Q<K$.
c) $\left[\mathrm{SO}_{3}\right]$ will increase because $Q<K$.
d) $\left[\mathrm{SO}_{3}\right]$ will increase because $Q>K$.
e) $\left[\mathrm{SO}_{3}\right]$ will remain the same because $Q=K$.
4. Excess $\mathrm{PbBr}_{2}(\mathrm{~s})$ is placed in water at $25^{\circ} \mathrm{C}$. At equilibrium, the solution contains $0.012 \mathrm{M} \mathrm{Pb}^{2+}(\mathrm{aq})$. What is the equilibrium constant for the reaction below?
$\mathrm{PbBr}_{2}(\mathrm{~s}) \leftrightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Br}^{-}(\mathrm{aq})$
a) 4.3×10^{-7}
b) 1.7×10^{-6}
c) 6.9×10^{-6}
d) 1.4×10^{-4}
e) 2.9×10^{-4}
5. When 0.50 mole $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ is dissolved in water to a volume of $1.00 \mathrm{~L}, 0.60 \%$ of the $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ dissociates to form $\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq})$. What is the equilibrium constant for the reaction?
-5
b) 3.6×10^{-5}
c) 3.0×10^{-3}
d) 6.0×10^{-3}
e) 0.45

Sections 16.4-16.6

6. If a stress is applied to an equilibrium system, the system will respond is such a way as to relieve that stress.

This is a statement :
a) Le Chatelier's principle
b) Law of conservation of Mass
c) $2^{\text {nd }}$ Law of Thermodynamics
d) None of the above
7. Consider the reaction below

$$
2 \mathrm{NOCl}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \Delta_{\mathrm{r}} \mathrm{H}^{\circ}=+77.1 \mathrm{~kJ} / \mathrm{mol}-\mathrm{rxn}
$$

How does $[\mathrm{NOCl}]$ change by a decrease in the temperature?
Page 1 of 5
a) No change
b) NOCl decreases
c) NOCl increases
d) None of the above
8. A gaseous mixture of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ is in equilibrium. If the concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ is $5.3 \times 10^{-5} \mathrm{M}$, what is the concentration of NO_{2} ?
$2 \mathrm{NO}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad K_{\mathrm{c}}=170$
a) $9.7 \times 10^{-14} \mathrm{M}$
b) $3.1 \times 10^{-4} \mathrm{M}$
c) $5.6 \times 10^{-4} \mathrm{M}$
d) $9.0 \times 10^{-3} \mathrm{M}$
e) $9.5 \times 10^{-2} \mathrm{M}$
9. The equilibrium constant at $25^{\circ} \mathrm{C}$ for the dissolution of silver iodide is 8.5×10^{-17}.

$$
\mathrm{AgI}(\mathrm{~s}) \leftrightarrow \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq})
$$

If an excess quantity of $\mathrm{Agl}(\mathrm{s})$ is added to water and allowed to equilibrate, what is the equilibrium concentration of I^{-}?
a) $7.2 \times 10^{-33} \mathrm{M}$
b) $4.3 \times 10^{-17} \mathrm{M}$
c) $8.5 \times 10^{-17} \mathrm{M}$
d) $6.5 \times 10^{-9} \mathrm{M}$
e) $9.2 \times 10^{-9} \mathrm{M}$
10. Carbonyl bromide decomposes to carbon monoxide and bromine.

$$
\mathrm{COBr}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})
$$

K_{c} is 0.19 at $73^{\circ} \mathrm{C}$. If an initial concentration of $0.63 \mathrm{M} \mathrm{COBr}_{2}$ is allowed to equilibrate, what is the equilibrium concentration of COBr_{2} ?
a) 0.26 M
b) 0.28 M
c) 0.35 M
d) 0.37 M
e) 0.40 M
11. For the following reaction,

$$
\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{SO}_{3}(\mathrm{~g})
$$

the equilibrium constant, K_{p}, is 0.870 at $627^{\circ} \mathrm{C}$. What is the equilibrium constant, at $627^{\circ} \mathrm{C}$, for the reaction below?

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

a) -1.74
b) -.757
c) 1.32
d) 2.30
e) 5.28
12. Assume that the following chemical reaction is at equilibrium.

$$
2 \mathrm{ICl}(\mathrm{~g}) \leftrightarrow \mathrm{I}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \Delta H^{\circ}=+26.9 \mathrm{~kJ}
$$

At $25^{\circ} \mathrm{C}, K_{\mathrm{p}}=2.0 \times 10^{5}$. If the temperature is decreased to $5^{\circ} \mathrm{C}$, which statement applies?
a) K_{p} will decrease and the reaction will proceed in the backward direction.
b) K_{p} will decrease and the reaction will proceed in the forward direction.
c) K_{p} will remain unchanged and the reaction will proceed in the forward direction.
d) K_{p} will remain unchanged and the reaction will proceed in the backward direction.
e) K_{p} will increase and the reaction will proceed in the forward direction.
13. In which of the following equilibrium systems will an increase in the pressure have no effect on the concentrations of products and reactants?
a) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HF}(\mathrm{g})$
b) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})$
c) $\mathrm{CaCO}_{3}(\mathrm{~s}) \leftrightarrow \mathrm{CaO}$ (s) $+\mathrm{CO}_{2}(\mathrm{~g})$
d) $2 \mathrm{NOBr}(\mathrm{g}) \leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g})$
e) $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})$

Sections 17.1-17.8

14. Which of the following substances is never a Brønsted-Lowry acid in an aqueous solution?
a) hydrogen fluoride, $\mathrm{HF}(\mathrm{g})$
b) sodium phosphate, $\mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{~s})$
c) ammonium chloride, $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$
d) hydrogen bromide, $\mathrm{HBr}(\mathrm{g})$
e) sodium bicarbonate, $\mathrm{NaHCO}_{3}(\mathrm{~s})$
15. Which equation depicts dihydrogen phosphate ion behaving as a Brønsted-Lowry base in water?
a) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
b) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \leftrightarrow \mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
c) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
d) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{O}^{2-}(\mathrm{aq}) \leftrightarrow \mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

Page 2 of 5
e) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{PO}_{3}(\mathrm{~s})$
16. What is the conjugate base of $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})$?
a) $\mathrm{H}_{3} \mathrm{O}^{+}$
b) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
c) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{H}_{3} \mathrm{O}\right]^{4+}$
d) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2+}$
e) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{3+}$
17. At $20^{\circ} \mathrm{C}$, the water ionization constant, K_{w}, is 6.8×10^{-15}. What is the $\mathrm{H}_{3} \mathrm{O}^{+}$concentration in neutral water at this temperature?
a) $4.6 \times 10^{-29} \mathrm{M}$
b) $3.4 \times 10^{-15} \mathrm{M}$
c) $6.8 \times 10^{-15} \mathrm{M}$
d) $8.2 \times 10^{-8} \mathrm{M}$
e) $1.0 \times 10^{-7} \mathrm{M}$
18. What is the OH^{-}concentration of an aqueous solution with a pH of 4.45 ? $\left(K_{\mathrm{w}}=1.0 \times 10^{-14}\right)$
a) $2.8 \times 10^{-10} \mathrm{M}$
b) $3.5 \times 10^{-5} \mathrm{M}$
c) $7.1 \times 10^{-5} \mathrm{M}$
d) 9.55 M
e) $2.8 \times 10^{4} \mathrm{M}$
19. Which of the following chemical equations corresponds to the acid ionization constant, K_{a}, for ammonium ion $\left(\mathrm{NH}_{4}{ }^{+}\right)$?
a) $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \leftrightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
b) $\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
c) $\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \leftrightarrow \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
d) $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \leftrightarrow \mathrm{NH}_{5}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
e) $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
20. Which of the following weak acids has the strongest conjugate base in an aqueous solution?
a) acetic acid, $K_{a}=1.8 \times 10^{-5}$
b) hydrocyanic acid, $K_{\mathrm{a}}=4.0 \times 10^{-10}$
c) hydrogen sulfite ion, $K_{a}=6.2 \times 10^{-8}$
d) nitrous acid, $K_{a}=4.5 \times 10^{-4}$
e) phosphoric acid, $K_{a}=7.5 \times 10^{-3}$
21. At $25^{\circ} \mathrm{C}$, all of the following ionic compounds produce a basic aqueous solution, except \qquad -.
a) KClO_{4}
b) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
c) NaNO_{2}
d) KCN
e) $\mathrm{NaCH}_{3} \mathrm{CO}_{2}$
22. What is the net ionic equation for the reaction of aqueous calcium acetate and aqueous sodium carbonate?
a) $\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq}) \rightarrow \mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2}(\mathrm{~s})$
b) $\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq}) \rightarrow \mathrm{NaCH}_{3} \mathrm{CO}_{2}(\mathrm{aq})$
c) $\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq}) \rightarrow \mathrm{NaCH}_{3} \mathrm{CO}_{2}$ (s)
d) $\mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})$
e) $\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{Na}^{+}(\mathrm{aq}) \rightarrow \mathrm{CaNa}_{2}(\mathrm{~s})$
23. What is the net ionic equation for the reaction of aqueous sodium hydroxide and aqueous iron(II) chloride?
a) $\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{NaOH}(\mathrm{s})$
b) $\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{s})$
c) $\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})$
d) $\mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{FeOH}^{+}(\mathrm{s})$
e) $\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{FeCl}_{2}(\mathrm{~s})$
24. What is the OH^{-}concentration in $0.48 \mathrm{M} \mathrm{F}^{-}(\mathrm{aq}) ?\left(K_{\mathrm{b}}\right.$ of $\left.\mathrm{F}^{-}=1.4 \times 10^{-11}\right)$
a) $6.7 \times 10^{-12} \mathrm{M}$
b) $1.4 \times 10^{-11} \mathrm{M}$
c) $3.9 \times 10^{-9} \mathrm{M}$
d) $1.7 \times 10^{-6} \mathrm{M}$
e) $2.6 \times 10^{-6} \mathrm{M}$
25. What is the pH of the solution which results from mixing 150 mL of $0.50 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq})$ and 150 mL of 0.50 $\mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ at $25^{\circ} \mathrm{C} ?\left(\mathrm{~K}_{\mathrm{a}}\right.$ of $\left.\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}=1.8 \times 10^{-5}\right)$
a) 2.67
b) 4.74
c) 4.93
d) 8.26
e) 9.07
26. What is the pH of $1.0 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{3}(\mathrm{aq})$ at $25^{\circ} \mathrm{C} ?\left(K_{\mathrm{a} 1}=1.2 \times 10^{-2}, K_{\mathrm{a} 2}=6.2 \times 10^{-8}\right)$
a) 3.40
b) 6.03
c) 7.96
d) 10.40
e) 10.60

Sections 18.1-18.3

27. An acid-base equilibrium system is created by dissolving 0.10 mol HF in water to a volume of 1.0 L . What is the effect of adding $0.050 \mathrm{~mol}^{-}(\mathrm{aq})$ to this solution?
a) The pH of the solution will decrease.
b) Some $\mathrm{F}^{-}(\mathrm{aq})$ will react with $\mathrm{H}_{3} \mathrm{O}^{+}$, increasing the concentration of $\mathrm{HF}(\mathrm{aq})$ and reestablishing the solution equilibrium.
c) The addition of $\mathrm{F}^{-}(\mathrm{aq})$ will have no effect on the pH or the concentration of $\mathrm{HF}(\mathrm{aq})$.
d) Some HF(aq) will ionize, increasing the concentration of $\mathrm{F}^{-}(\mathrm{aq})$ and decreasing the pH .
e) Some $\mathrm{HF}(\mathrm{aq})$ will ionize, increasing the concentration of $\mathrm{F}^{-}(\mathrm{aq})$ and increasing the pH .
28. What is the pH of a solution that results from diluting 0.50 mol formic acid $\left(\mathrm{HCO}_{2} \mathrm{H}\right)$ and 0.10 mol sodium formate $\left(\mathrm{NaHCO}_{2}\right)$ with water to a volume of 1.0 L ? $\left(\mathrm{K}_{\mathrm{a}}\right.$ of $\left.\mathrm{HCO}_{2} \mathrm{H}=1.8 \times 10^{-4}\right)$
a) 2.22
b) 3.05
c) 3.74
d) 3.98
e) 4.44
29. What is the pH of a solution that results from adding 25 mL of 0.50 M NaOH to 75 mL of $0.50 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$? (K_{a} of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}=1.8 \times 10^{-5}$)
a) 4.44
b) 4.74
c) 5.05
d) 9.26
e) 13.10
30. Which of the following combinations would be best to buffer an aqueous solution at a pH of 4.5 ?
a) $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}, K_{\mathrm{a} 1}=7.5 \times 10^{-3}$
b) HNO_{2} and $\mathrm{NO}_{2}^{-}, K_{\mathrm{a}}=4.5 \times 10^{-4}$
c) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ and $\mathrm{CH}_{3} \mathrm{COO}^{-}, K_{\mathrm{a}}=1.8 \times 10^{-5}$
d) $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$and $\mathrm{HPO}_{4}{ }^{2-}, K_{\mathrm{a} 2}=6.2 \times 10^{-8}$
e) NH_{4}^{+}and $\mathrm{NH}_{3}, K_{\mathrm{a}}=5.7 \times 10^{-10}$
31. What is the pH of the buffer that results when 15.0 g of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ and 15.0 g of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ are diluted with water to a volume of $0.50 \mathrm{~L} ?\left(K_{\mathrm{a}}\right.$ of $\left.\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}=6.2 \times 10^{-8}\right)$
a) 7.13
b) 7.21
c) 7.28
d) 8.05
e) 8.39
32. What mass of solid $\mathrm{NaCH}_{3} \mathrm{CO}_{2}$ (molar mass $=82.0 \mathrm{~g} / \mathrm{mol}$) should be added to 1.0 L of $0.50 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ to make a buffer with a pH of 7.21 ? $\left(\mathrm{p} K_{\mathrm{a}}\right.$ of $\left.\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}=7.21\right)$
a) 0.0 g
b) 1.9 g
c) 41 g
d) 71 g
e) $1.6 \times 10^{2} \mathrm{~g}$
33. A volume of 25.0 mL of $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq})$ is titrated with $0.100 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$. What is the pH after the addition of 12.5 mL of NaOH ? $\left(\mathrm{K}_{\mathrm{a}}\right.$ for $\left.\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}=1.8 \times 10^{-5}\right)$
a) 3.74
b) 4.74
c) 5.74
d) 7.00
e) 9.26
34. A 50.00 mL sample of vinegar is titrated with $0.584 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$. If the titration requires 32.80 mL of $\mathrm{NaOH}(\mathrm{aq})$, what is the concentration of acetic acid in the vinegar?
a) 0.0100 M
b) 0.0192 M
c) 0.0292 M
d) 0.383 M
e) 0.890 M
35. An impure sample of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, is titrated with 0.123 M HCl according to the reaction below. $2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+2 \mathrm{NaCl}(\mathrm{aq})$
What is the percent of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in a 0.557 g sample if the titration requires 25.30 mL of HCl ? The molar mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is $106.0 \mathrm{~g} / \mathrm{m}$ ol.
a) 0.559%
b) 29.6%
c) 55.9%
d) 59.2%
e) 118%

Answers:

1	d	21	a
2	d	22	d
3	d	23	c
4	C	24	e
5	a	25	e
6	a	26	e
7	c	27	b
8	c	28	b
9	e	29	a
10	d	30	c
11	C	31	a
12	a	32	C
13	a	33	b
14	b	34	d
15	a	35	b
16	d		
17	d		
18	a		
19	b		
20	b		

