Chemistry 6A F2007

Dr. J.A. Mack

12/5/07

12/5/07 Dr. Mack. CSUS

What do I need to bring?

Scantron form 882 100 question jobby-doo

chewing optional...

12/5/07

Dr. Mack. CSUS

3

Exam 3: Friday 12/7/07 (here in lecture)

What will be covered on the exam?

•Chapter 6: 6.9-6.15

•Chapter 7: All

•Chapter 8: All

•Chapter 9: 9.1 - 9.9

•Any thing from lab as well

What do I need to bring?

Bring a Pencil, Eraser, Calculator and scamtron form 882

YOU NEED TO KNOW YOUR LAB SECTION NUMBER!

12/5/07 Dr. Mack. CSUS 2

EXAMPLES OF NUCLEAR REACTIONS

Example 1: Bromine-84 decays by emitting a beta particle. What is the symbol for the daughter produced?

Recall for isotopes:

 ${}_{Z}^{A}X$

X =the element

A = mass number

Z = atomic number

35 protons, 49 neutrons

$$^{84}_{35}$$
Br $\rightarrow ^{0}_{-1}\beta + ^{84}_{36}$ Kr

When a beta particle is lost $\binom{0}{-1}\beta$ the daughter must have a mass number of 84 and an atomic number of 36.

12/5/07 Dr. Mack. CSUS

5

$$^{84}_{35}$$
Br $\longrightarrow ^{0}_{-1}\beta + ^{84}_{36}$ Kr

Notice that overall mass and the number of protons are the same on each side of the arrow...

$$84 = 84 + 0$$
$$35 = -1 + 36$$

Just as in a chemical process, mass must be balanced in a nuclear process.

12/5/07 Dr. Mack. CSUS 6

Alpha Decay: **Daughter** Nucleus Np-237 Th-234 **Parent Nucleus** Ra-228 Am-241 Rn-222 U-238 Th-232 Alpha Particle Ra-226 (Helium Nucleus) (4.00147 amu) Dr. Mack. CSUS 12/5/07

The Decay Processes – General Rules

- 1. When one element changes into another element, the process is called *spontaneous decay* or *transmutation*
- 2. The sum of the mass numbers, A, must be the same on both sides of the equation
- 3. The sum of the atomic numbers, Z, must be the same on both sides of the equation
- 4. Conservation of mass-energy and conservation of momentum must hold

12/5/07 Dr. Mack. CSUS 7

Example 2: When samarium-148 undergoes radioactive decay, the daughter produced is neodymium-144.

What kind of radiation is emitted during the decay?

$$^{148}_{62}$$
Sm $\rightarrow ^{144}_{60}$ Nd + $^{4}_{2}\alpha$

The daughter has a mass number of 144, so the emitted radiation must have a mass number of 4.

The difference between the atomic numbers is 2.

Therefore, it is an alpha particle.

Example 3: Tungsten-175 decays by drawing in an electron from outside the nucleus in a process called **electron capture.**

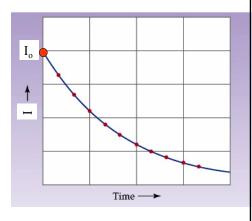
Write a balanced nuclear equation for the process.

$$^{175}_{74}W + ^{0}_{-1}e \longrightarrow ^{175}_{73}Ta$$

The daughter must have a mass number of 175, because the mass number of an electron is 0.

The atomic number of the daughter must be 73 because the charge on the electron is -1.

12/5/07 Dr. Mack. CSUS 12


Reaction Half-life t=0 $t=t_{1/2}$ $t=3t_{1/2}$ $t=3t_{1/2}$ $t=3t_{1/2}$ $t=3t_{1/2}$ $t=3t_{1/2}$ $t=3t_{1/2}$ $t=3t_{1/2}$ Time (arbitrary units) 12/5/07 Dr. Mack. CSUS

RADIO ISOTOPE LIFE TIMES AND HALF-LIFES

Radioactive decay occurs exponentially with time:

Starting with an initial amount of an isotope, I_o, the amount decreases with time.

$$I = I_o \times e^{-kt}$$

13

12/5/07 Dr. Mack. CSUS

Technetium-99 has a radioactive half life of 6 hours. It is used as a diagnostic tracer isotope in brain cancer scans.

If a patient is given a 9.0 ng dose, how much technetium will remain in the patients system after 1 day?

Recall that there are 24 hrs in one day... Which means that 4 half-lives will pass!

9.0 ng
$$\times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = 9.0 \text{ ng} \times \left(\frac{1}{2^4}\right) = 9.0 \text{ ng} \times \left(\frac{1}{16}\right)$$

$$= 0.56 \text{ ng or } 560 \text{ pg}$$

What happens when a radioactive substance decays through "n" half lives?

initial amount
$$\left(\times \frac{1}{2} \times \bullet \bullet \bullet \times \frac{1}{2} \right) = \text{final amount}$$

1 to n

Initial
$$\times \left(\frac{1}{2^n}\right) = \text{final}$$

Initial
$$\times \left(\frac{1}{2}\right)^n$$
 = final

$$\left(\frac{1}{2}\right)^n = \frac{\text{final}}{\text{initial}}$$
 $n = \# \text{ of half-lives}$

19

12/5/07 Dr. Mack. CSUS

What happens when a radioactive substance decays through "n" half lives?

$$n \times \log(2) = -\log\left(\frac{\text{final}}{\text{initial}}\right) \longrightarrow n \times \log(2) = \log\left(\frac{\text{initial}}{\text{final}}\right)$$

$$n = \frac{1}{0.301} \times log\left(\frac{initial}{final}\right) \qquad \bullet \qquad \qquad n = \frac{log\left(\frac{initial}{final}\right)}{log(2)}$$

$$n = \# of half-lives$$

12/5/07 Dr. Mack. CSUS 21

What happens when a radioactive substance decays through "n" half lives?

Taking the log of the equation:

$$\log \left(\left(\frac{1}{2} \right)^{n} = \frac{\text{final}}{\text{initial}} \right) \longrightarrow \log \left(\frac{1}{2} \right)^{n} = \log \left(\frac{\text{final}}{\text{initial}} \right)$$

From the rules of logarithms:

$$n \times \log(2) = -\log\left(\frac{\text{final}}{\text{initial}}\right)$$
 \longrightarrow $n \times \log\left(\frac{1}{2}\right) = \log\left(\frac{\text{final}}{\text{initial}}\right)$

12/5/07 Dr. Mack. CSUS 20

A 12.5% of a certain isotope remains after 3.5 days. How many half-lives have passed?

$$n = \frac{1}{0.301} \times \log \left(\frac{\text{initial}}{\text{final}} \right)$$

Substituting:

$$n = \frac{1}{0.301} \times log \left(\frac{100.0\%}{12.5\%} \right)$$
 initially all of the material was present.

$$n = 3$$

three half-lives have passed!

Units of Radiation exposure:

- •Rad is most often used in US
- •International unit called gray (Gy)
- •Quality Factor (QF) is used to adjust for differences in tissue absorption

1 Dose in (rads) \times QF = rem rad = cGy

Radiation: Acute Exposure

- •10 rad or greater within a short period of time (< 2-3 days)
- •Acute Radiation Syndrome is apparent at doses > 100 rad
- •Dose >450 rad
- •50% of exposed population will die within 60 days without medical care

12/5/07 Dr. Mack. CSUS 23

Other symptoms

Thyroid damage: 50 rad Ovarian damage: 125-200 rad

Gonadal damage with permanent sterility: 600 rad Skin erythema and hair follicle damage: 200-300 rad

Radiation: Chronic Exposure: Small amounts over a long period:

- •Type of exposure typically seen in occupational exposures
- •Body usually able to repair itself
- Increased risk of some cancers

12/5/07 Dr. Mack. CSUS 25

Radiation: Acute Exposure

- •Blood-forming organs affected at >100 rad
- •Bone marrow, spleen, and lymphatic tissue
- •Symptoms: internal bleeding, fatigue, bacterial infection, fever
- •Gastrointestinal tract affected at >1000 rad Stomach, intestines

Symptoms: nausea, vomiting, diarrhea, dehydration, electrolyte imbalance, bleeding ulcers

Central Nervous System affected at >5000 rad

Damage to brain and nerve cells Symptoms: loss of coordination, confusion, coma, convulsion