Chemistry 6A F2007

Dr. J.A. Mack

11/5/07

11/5/07 Dr. Mack. CSUS

Heat and the Specific Heat Capacity:

- ♦ When heat is absorbed or lost by a body, the temperature must change as long as the phase (s, g or l) remains constant.
- ♦ The amount of heat (q) transfer is related to the mass and temperature by:

q = heat lost or gained (J)

m = mass of substance (g)

$$q = m \times C \times \Delta T$$

C = the Specific Heat Capacity of a compound $\left(\frac{J}{g \cdot {}^{\circ}C}\right)$

 ΔT is the temperature change in degrees Celsius or Kelvins

11/5/07 Dr. Mack. CSUS 3

Changes of State:

Energy Changes Accompanying Phase Changes

The sequence:

heat solid \rightarrow form liquid \rightarrow heat liquid \rightarrow form gas (vapor) \rightarrow heat gas \uparrow (melt) (boil or vaporize)

is endothermic. (energy must be supplied)

The sequence:

 $\begin{array}{c} \text{cool gas} \rightarrow \text{form liquid} \rightarrow \text{cool liquid} \rightarrow \text{form solid} \rightarrow \text{cool solid} \\ \uparrow \\ \textit{(condense)} \end{array}$

8

is **exothermic**. (energy is released)

11/5/07 Dr. Mack. CSUS

Changes of State:

All phase changes are *isothermal*, that is a phase change occurs at one temperature.

The heat added or lost involves overcoming the intermolecular forces. It does not increase the kinetic energy of the particles.

11/5/07 Dr. Mack. CSUS

9

How much energy is needed to take 10.0g of ice from $-10.0^{\circ}C$ to wateer at $10.0^{\circ}C$.

Heat =
$$m \times C \times \Delta T$$
 Heat = $m \times Heat_{(fus)}$

Dr. Mack. CSUS

Total Heat:

11/5/07

at:
=
$$10.0g \text{ ice } \times \frac{2.092 \text{ J}}{g^{\circ} \text{C}} \times \{0^{\circ} \text{C} - (-10.0^{\circ} \text{C})\}$$
 warming the ice
+ $10.0g \times \frac{333 \text{ J}}{g}$ melting the ice
+ $10.0g \times \frac{4.184 \text{ J}}{g^{\circ} \text{C}} \times (10.0^{\circ} \text{C} - 0.0^{\circ} \text{C})$ warming the water
= 3960 J or 946 cal

12

How much energy is needed to take 10.0g of ice from -10.0°C to wateer at 10.0°C.

The total energy required is a sum of the steps which take the ice to water.

$$C_{ice}$$
: $\frac{2.092J}{g^{\circ}C}$ C_{water} : $\frac{4.184J}{g^{\circ}C}$ $Heat_{(fus)}$: $\frac{333J}{g}$

Where do you get these numbers... Back
Of (the)

Book

Dr. Mack. CSUS

11

Chapter 7: Solutions and Colloids

LEARNING OBJECTIVES

11/5/07

- 1. Classify mixtures and identify the components.
- 2. Predict solubility using solute-solvent interactions and understand the solution process.
- 3. Understand how to prepare solutions and calculate concentrations in units of molarity, weight/weight percent, weight/volume percent, and volume/volume percent.
- 4. Perform stoichiometric calculations using solution concentration and volume.
- 5. Calculate boiling point elevation, freezing point depression and the osmotic pressure of aqueous solutions.
- 6. Describe the characteristics of colloids.
- 7. Describe the process of dialysis and contrast it to the process of osmosis.

11/5/07 Dr. Mack. CSUS 13

Solubility and the Solution Process:

When a *solute* dissolves in a *solvent*, the *solution* that forms is a homogeneous mixture.

solute: "That which is dissolved" (generally the lesser quantity) *solvent*: "That which is dissolved" (generally the greater quantity)

- •Solutions can have more than one solutes
- •Solutions can be liquid or gaseous
- •Solutions with water as the solvent are called "aqueous" solutions
- •The particles dissolved in the solvent are too small to reflect light so all solutions are "clear"
- •The particles dissolved in the solution never settle out due to gravity.

11/5/07 Dr. Mack. CSUS 14

SOLUBILITY:

The solubility of a solute is the maximum amount of solute that can be dissolved in a specific amount of solvent under specific conditions of temperature and pressure.

TABLE 7.3	Approximate
solubility ter	ms

General Solubility Guidelines

Solute solubility (g solute/100 g H ₂ O)	Solubility term
Less than 0.1	Insoluble
0.1-1	Slightly soluble
1-10	Soluble
Greater than 10	Very soluble

9 2007 Thomson Higher Education

11/5/07 Dr. Mack. CSUS 16

TABLE 7.2 Examples of solute solubilities in water (0°C)

Solute	Solubility		
Name	Formula	(g solute/100 g H ₂ O)	
Ammonium chloride	NH ₄ Cl	29.7	
Ammonium nitrate	NH ₄ NO ₃	118.3	
Ammonium orthophosphate	$NH_4H_2PO_4$	22.7	
Ammonium sulfate	$(NH_4)_2SO_4$	70.6	
Calcium carbonate	CaCO ₃	0.0012	
Calcium chloride	CaCl ₂	53.3	
Calcium sulfate	CaSO ₄	0.23	
Potassium carbonate	K_2CO_3	101	
Potassium chloride	KCl	29.2	

Notice that ammonium and potassium salts are quite soluble...

11/5/07 Dr. Mack. CSUS 17

TABLE 7.2	Examples of	solute solubilities	in water	(0°C)
------------------	-------------	---------------------	----------	-------

Solute	Solubility		
Name	Formula	(g solute/100 g H ₂ O)	
Sodium bicarbonate	NaHCO ₃	6.9	
Sodium bromide	NaBr	111	
Sodium carbonate	Na ₂ CO ₃	7.1	
Sodium chloride	NaCl	35.7	
Sodium iodide	NaI	144.6	
Ascorbic acid (vitamin C)	$C_6H_8O_6$	33	
Ethyl alcohol	C_2H_5OH	∞ ^a	
Ethylene glycol (antifreeze)	$C_2H_4(OH)_2$	∞	
Glycerin	$C_3H_5(OH)_3$	∞	
Sucrose (table sugar)	$C_{12}H_{22}O_{11}$	179.2	

Miscible liquids are infinitely soluble in one another!

11/5/07 Dr. Mack. CSUS 18

Solids that do not dissolve in a particular liquid solvent are called *precipitates*.

lead (II) iodide is an insoluble salt

and insoluble salt is a precipitate

Liquids that do not dissolve in a particular liquid are said to be *immiscible*.

20

11/5/07 Dr. Mack. CSUS

A SATURATED SOLUTION is a stable solution that contains the maximum amount of dissolved solute under the normal conditions of temperature and pressure.

A SUPERSATURATED SOLUTION is an unstable solution that contains an amount of solute greater than the solute solubility under the prevailing conditions of temperature and pressure.

The solute in a supersaturated solution will fall out if it is disturbed:

11/5/07 Dr. Mack. CSUS

INCREASING THE RATE OF DISSOLVING

Crush or grind the solute:

Smaller particles provide for more surface area for solvent interaction, thus increasing the rate of solubility.

Heat the solvent:

When the solvent molecules move faster, there are more frequent collisions with solute thus increasing the rate of solution.

Stir or agitate the solution:

Stirring removes locally saturated solution from the vicinity of the solute thus allowing unsaturated solvent to take its place.

11/5/07 Dr. Mack. CSUS 21