Atom: The smallest divisible unit of an element
Compound: A substance made of two or more atoms
Ion: A charged atom or molecule
Cation: Positive ion
Anion: Negative ion

NOMENCLATURE
Format for naming chemical compounds using prefixes, suffixes, and other modifications of the names of elements which constitute compounds.

Sometimes things get confusing…

Elements:
H = hydrogen
O = oxygen
C = carbon

Compounds:
H₂ = hydrogen
O₂ = oxygen
H₂O = water
Ion Charges:

<table>
<thead>
<tr>
<th>Charge</th>
<th>Ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>H+</td>
</tr>
<tr>
<td>+2</td>
<td>Li+</td>
</tr>
<tr>
<td>+3</td>
<td>Na+</td>
</tr>
<tr>
<td>+4</td>
<td>Mg2+</td>
</tr>
<tr>
<td>+5</td>
<td>Al3+</td>
</tr>
<tr>
<td>+6</td>
<td>S6+</td>
</tr>
<tr>
<td>-1</td>
<td>F-</td>
</tr>
<tr>
<td>-2</td>
<td>O2-</td>
</tr>
<tr>
<td>-3</td>
<td>S2-</td>
</tr>
<tr>
<td>-4</td>
<td>Se4-</td>
</tr>
<tr>
<td>-5</td>
<td>Se5-</td>
</tr>
<tr>
<td>-6</td>
<td>Br6-</td>
</tr>
<tr>
<td>-7</td>
<td>I7-</td>
</tr>
<tr>
<td>0</td>
<td>He</td>
</tr>
</tbody>
</table>

Compounds fall into one of two classes:

Inorganic Salts
- **Metal cation**
- **Non-metal or polyatomic anion**

Molecules
- **Non-metal**
- **Non-metal**

The two use different formalisms for naming…

Binary Compounds: Metal & non-Metal

Metal of fixed oxidation (charge) state combined with a non-metal.

Examples:
- **K**
- **Ca**
- **Na**
- **Al**

<table>
<thead>
<tr>
<th>Cation</th>
<th>Anion</th>
<th>Formula</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>K+</td>
<td>Cl−</td>
<td>KCl</td>
<td>Potassium chloride</td>
</tr>
<tr>
<td>Ca2+</td>
<td>O2−</td>
<td>CaO</td>
<td>Calcium Oxide</td>
</tr>
<tr>
<td>Na+</td>
<td>S2−</td>
<td>Na2S</td>
<td>Sodium sulfide</td>
</tr>
<tr>
<td>Al3+</td>
<td>S2−</td>
<td>Al2S3</td>
<td>Aluminum sulfide</td>
</tr>
</tbody>
</table>

Metals of variable charge (transition) with a non-metal

Examples:
- modify transition metal name with roman numeral

<table>
<thead>
<tr>
<th>Cation</th>
<th>Anion</th>
<th>Formula</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb2+</td>
<td>Cl−</td>
<td>PbCl2</td>
<td>lead (II) chloride</td>
</tr>
<tr>
<td>Pb4+</td>
<td>Cl−</td>
<td>PbCl4</td>
<td>lead (IV) chloride</td>
</tr>
<tr>
<td>Fe3+</td>
<td>O2−</td>
<td>Fe2O3</td>
<td>Iron (III) oxide</td>
</tr>
</tbody>
</table>

non-metal takes on “ide” suffix

- pronounced: lead - two - chloride
Some common polyatomic ions:

<table>
<thead>
<tr>
<th>Ion</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₄⁺</td>
<td>ammonium</td>
</tr>
<tr>
<td>H₃O⁺</td>
<td>hydronium</td>
</tr>
<tr>
<td>CO₃²⁻</td>
<td>carbonate</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>hydrogen or bicarbonate</td>
</tr>
<tr>
<td>NO₂⁻</td>
<td>nitrite</td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>nitrate</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>sulfate</td>
</tr>
<tr>
<td>SO₃²⁻</td>
<td>sulfite</td>
</tr>
<tr>
<td>PO₄³⁻</td>
<td>phosphate</td>
</tr>
<tr>
<td>C₂H₃O₂⁻</td>
<td>acetate</td>
</tr>
</tbody>
</table>

Termary Compounds: Those with three different elements

Type A: metal of fixed charge with a complex ion

<table>
<thead>
<tr>
<th>Cation</th>
<th>Anion</th>
<th>Formula</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>K⁺</td>
<td>OH⁻</td>
<td>KOH</td>
<td>Potassium hydroxide</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>OH⁻</td>
<td>Ca(OH)₂</td>
<td>Calcium hydroxide</td>
</tr>
<tr>
<td>Na⁺</td>
<td>SO₄²⁻</td>
<td>Na₂SO₄</td>
<td>Sodium sulfate</td>
</tr>
<tr>
<td>Al³⁺</td>
<td>SO₄²⁻</td>
<td>Al₂(SO₄)₃</td>
<td>Aluminum sulfate</td>
</tr>
</tbody>
</table>

Metal of variable charge transition) with a complex ion

<table>
<thead>
<tr>
<th>Cation</th>
<th>Anion</th>
<th>Formula</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe³⁺</td>
<td>NO₃⁻</td>
<td>Fe(NO₃)₃</td>
<td>Iron (III) nitrate</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>NO₂⁻</td>
<td>Fe(NO₂)₂</td>
<td>Iron (II) nitrite</td>
</tr>
</tbody>
</table>

Non-metal with a non-metal

When non-metals combine, they form molecules. They may do so in multiple forms:

CO → CO₂

Because of this we need to specify the number of each atom by way of a prefix.

1 = mono 2 = di 3 = tri 4 = tetra
5 = penta 6 = hexa 7 = hepta
Examples:

<table>
<thead>
<tr>
<th>Formula</th>
<th>Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCl₃</td>
<td>boron trichloride</td>
</tr>
<tr>
<td>SO₃</td>
<td>sulfur trioxide</td>
</tr>
<tr>
<td>NO</td>
<td>nitrogen monoxide</td>
</tr>
<tr>
<td>we don't write:</td>
<td>nitrogen monooxide or mononitrogen monoxide</td>
</tr>
<tr>
<td>N₂O₄</td>
<td>dinitrogen tetraoxide</td>
</tr>
</tbody>
</table>

D) Writing formulas for acids and Bases

• An **acid** is a substance that produces H⁺ when dissolved in water.
• Certain gaseous molecules become acids when dissolved in water.

• A **base** produces OH⁻ when dissolved in water.
• Bases often are Group I and Group II hydroxide salts.

Type I Acids: Acids derived from –ide anions.

The names for these acids follow the formula:

“hydro” + the root of the ide anion + **ic** “acid”

<table>
<thead>
<tr>
<th>Anion</th>
<th>Acid</th>
<th>Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>chloride</td>
<td>HCl</td>
<td>hydrochloric acid</td>
</tr>
<tr>
<td>fluoride</td>
<td>HF</td>
<td>hydrofluoric acid</td>
</tr>
</tbody>
</table>

H⁺ and S²⁻

\[
\text{H}_2\text{S} \quad \text{it takes 2} \ H^+ \ \text{to cancel one} \ S^2- \\
\]

 hydro sulfuric acid
Examples:

<table>
<thead>
<tr>
<th>Anion:</th>
<th>Acid:</th>
<th>Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(nitrate)</td>
<td>NO₃⁻</td>
<td>nitric acid</td>
</tr>
<tr>
<td>(sulfate)</td>
<td>SO₄²⁻</td>
<td>sulfuric acid</td>
</tr>
<tr>
<td>(acetate)</td>
<td>C₂H₃O₂⁻</td>
<td>acetic acid</td>
</tr>
</tbody>
</table>

Practice:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂SO₄</td>
<td>sodium sulfate</td>
<td></td>
</tr>
<tr>
<td>barium carbonate</td>
<td>BaCO₃</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>Iron (II) oxide</td>
<td></td>
</tr>
<tr>
<td>zinc phosphide</td>
<td>Zn₃P₂</td>
<td></td>
</tr>
<tr>
<td>NiBr₂</td>
<td>nickel (II) bromide</td>
<td></td>
</tr>
</tbody>
</table>

Common Names:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
<td></td>
</tr>
<tr>
<td>carbon monoxide</td>
<td>CO</td>
<td></td>
</tr>
<tr>
<td>P₂O₅</td>
<td>diphosphorous pentaoxide</td>
<td></td>
</tr>
<tr>
<td>nitrogen trihydride</td>
<td>NH₃</td>
<td>(ammonia)</td>
</tr>
<tr>
<td>H₂O</td>
<td>water</td>
<td></td>
</tr>
<tr>
<td>ammonia</td>
<td>NH₃</td>
<td></td>
</tr>
<tr>
<td>CH₄</td>
<td>methane</td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
<td></td>
</tr>
<tr>
<td>N₂O</td>
<td>nitrous oxide</td>
<td></td>
</tr>
</tbody>
</table>
please go to my chem. 1A web site and download a nomenclature practice worksheet if you need more review.
http://www.csus.edu/indiv/m/mackj/chem1a/chem1A_lab.html
The link to the worksheet is at the top of the page.

Modern Atomic Theory:

• Atoms are made of protons, neutrons and electrons.
• The nucleus of the atom carries most of the mass.
• It consists of the protons and neutrons surrounded by a cloud of electrons.
 The charge on the electron is −1
 The charge on the proton is +1
 There is no charge on the neutron

The Atomic Number or number of protons in the nucleus defines an element.

Isotopes, Atomic Numbers, and Mass Numbers

• Atomic number (Z) = number of protons in the nucleus.
• Mass number (A) = total number of nucleons in the nucleus (i.e., protons and neutrons).
• One nucleon has a mass of 1 amu
 (Atomic Mass Unit) a.k.a “Dalton”
• Isotopes have the same Z but different A.
• The elements are arranged by Z on the periodic table.

By convention, for element X, we write \[A^Z_X \]

The isotope \[_{34}^{75}\text{Se} \] is used medically for diagnosis of pancreatic disorders. How many protons, neutrons, and electrons does an atom of \[_{34}^{75}\text{Se} \] have?

75 protons + 34 neutrons

protons = 34 electrons = 34
neutrons = 75-34 = 41
Avagadro’s Number

Since one mole of 12C has a mass of 12g (exactly), 12g of 12C contains 6.022142×10^{23} 12C-atoms.

But carbon exists as 3 isotopes: C-12, C-13 & C-14

The average atomic mass of carbon is 12.011 u.

From this we conclude that 12.011g of carbon contains 6.022142×10^{23} C-atoms

Is this a valid assumption? Yes, since N_A is so large, the statistics hold.

Molar Masses (Molecular Weights) of Compounds:

The molar mass of a *molecular compound* is the sum of the molar masses of its atoms.

Example:

The molar mass of CO$_2$ is:

\[
1 \times (12.01 \text{ g/mol}) + 2 \times (16.00 \text{ g/mol}) = 44.01 \text{ g/mol}
\]

How many oxygen atoms are there in 25.1g of chromium (III) acetate?

step 1: write the correct chemical formula...

\[
\text{Cr}^{3+} \text{ & } \text{C}_2\text{H}_3\text{O}_2^- \rightarrow \text{Cr(C}_2\text{H}_3\text{O}_2)_3
\]

step 2: calculate the molar mass...

229.13 g/mol

step 3: use dimensional analysis to solve the problem...

\[
25.1 \text{ g Cr(C}_2\text{H}_3\text{O}_2)_3 \times \frac{1 \text{ mol Cr(C}_2\text{H}_3\text{O}_2)_3}{229.13 \text{ g Cr(C}_2\text{H}_3\text{O}_2)_3} \times \frac{6 \text{ mol O}}{1 \text{ mol Cr(C}_2\text{H}_3\text{O}_2)_3} \\
\times \frac{6.022 \times 10^{23} \text{ O-atoms}}{1 \text{ mol O}} = 3.96 \times 10^{23} \text{ O-atoms}
\]

Percent Composition:

The relative amounts of each atom in a molecule or compound can be represented fraction of the whole.

Question: What is the weight % of each element in C$_2$H$_6$?

First determine the molar mass of C$_2$H$_6$:

1 mol of C$_2$H$_6$ has a mass of 30.07 g

\[
(2 \times 12.01 + 6 \times 1.008) \text{ g/mol}
\]

Next determine the mass of hydrogen in 1 mol of the compound:

\[
1 \text{ mol C}_2\text{H}_6 \times \frac{6 \text{ mol H}}{1 \text{ mol C}_2\text{H}_6} \times \frac{1.0079 \text{ g H}}{1 \text{ mol H}} = 6.047 \text{ g H}
\]
Now relate the mass of H in one mol of the compound to the molar mass of the compound

\[
6.047 \text{ g H} \times \frac{1}{30.07 \text{ g C}_2\text{H}_6} \times 100 = 20.11\% \text{ H}
\]

Since there is only C as the remaining element:

\[
\% \text{ C} = 100 - \% \text{ H} = 79.89 \% \text{ C}
\]

The compound C\(_2\)H\(_6\) is **20.11\% H & 79.89\% C**

Determining a Formula from Percent Composition:

Given the relative percentages of each element in a compound,

10 \% X, 20 \% Y, 30 \% Z etc…

one can find the **empirical formula** of the compound.

The **empirical formula** of a compound or molecule represents the simplest ratio of each element in 1 mol of the compound or molecule.

Example: A compound is found to be 64.82 \% carbon, 21.59 \% oxygen and 13.59 \% hydrogen. What is the empirical formula for this compound?

Solution: determine X, Y & Z in (C\(_x\)H\(_y\)O\(_z\))

1. Since the percentages for each element sum to 100\%, if one equates \% to grams (g), the sum of the masses must be 100g.
 (i.e. one can assume 100g of the compound)

 \[
 \begin{align*}
 64.82 \text{ g C} & \quad 21.59 \text{ g O} & \quad 13.59 \text{ g H}
 \end{align*}
 \]

2. Convert the grams of each element to moles.
 (g element \(\rightarrow\) mole X etc…)

 \[
 \begin{align*}
 64.82 \text{ g C} \times \frac{1 \text{ mol C}}{12.011 \text{ g C}} &= 5.397 \text{ mol C} \\
 21.59 \text{ g O} \times \frac{1 \text{ mol O}}{16.00 \text{ g O}} &= 1.349 \text{ mol O} \\
 13.59 \text{ g H} \times \frac{1 \text{ mol H}}{1.0079 \text{ g H}} &= 13.48 \text{ mol H}
 \end{align*}
 \]
3. Divide each of the individual moles by the smallest number of moles to gain the molar ratios for each element in the compound. These are the formula subscripts. \((X_2Y_3\text{ etc…})\)

\[
\begin{align*}
\text{Subscript for C} & \quad \text{Subscript for H} & \quad \text{Subscript for O} \\
\frac{5.397}{1.349} = 4.001 & \quad \frac{13.48}{1.349} = 9.992 & \quad \frac{1.349}{1.349} = 1.000
\end{align*}
\]

If the ratios are fractional (0.5, 1.5 or 0.333) multiply each ratio by a whole number to get even number formula subscripts.

Examples: \(0.5 \times 2 = 1\) \(0.25 \times 4 = 1\) \(0.333 \times 3 = 1\)

Rounding to the nearest whole numbers:

\[
\begin{align*}
X &= 4.001 = 4 \\
Y &= 9.992 = 10 \\
Z &= 1.000 = 1
\end{align*}
\]

The empirical formula is: \(C_4H_{10}O\)

The results of this calculation tells us only about the empirical formula of the compound.

To determine the molecular formula, we need more information. This will be shown in a later example.

Chemical Equations:

Mass is conserved in a chemical reaction.

\[
\text{Total mass of reactants} = \text{Total mass of products}
\]

Chemical equations must therefore be balance for mass.

The number and type of atoms on either side of the equation must be equal!
Reduction and Oxidation Reactions: RedOx

Oxidation involves an atom or compound losing electrons

Reduction involves an atom or substance gaining electrons

Neither process can occur alone… that is, there must be an exchange of electrons in the process.

The substance that is **oxidized** is the reducing agent

The substance that is **reduced** is the oxidizing agent

Chemists use oxidation numbers to account for the transfer of electrons in a RedOx reaction.

Electrochemistry: Oxidation numbers

In the compound potassium bromate (KBrO₃), the oxidation number of bromine (Br) is?

The compound is neutral so the sum of the oxidation numbers should be zero.

\[KBrO_3 \]

\[+1 \quad 5 \quad 3 \times (-2) = -6 \]

\[K^+ BrO_3^- \]

\[1 + ?? + (-6) = 0 \quad ?? = 5 \]

Balancing REDOX reactions:

\[Fe + O_2 \rightarrow Fe_2O_3 \]

oxidation states: \[0 \quad 0 \quad +3 \quad -2 \]

oxidation half reaction: \[\{ Fe \rightarrow Fe^{3+} \quad +3e^- \} \times 4 \]

reduction half reaction: \[\{ O_2 + 4e^- \rightarrow 2O^{2-} \} \times 3 \]

Balance electrons transferred then sum the half RXN’s:

\[4Fe + 3O_2 + 12e^- \rightarrow 2Fe_2O_3 + 12e^- \]

\[4Fe + 3O_2 \rightarrow 2Fe_2O_3 \]
Consider the following reaction:

\[
\text{HCl (aq)} + \text{Ba(OH)}_2 (\text{aq}) \rightarrow \text{H}_2\text{O (l)} + \text{BaCl}_2(\text{aq})
\]

Balancing:

\[
2 \text{HCl (aq)} + \text{Ba(OH)}_2 (\text{aq}) \rightarrow 2\text{H}_2\text{O (l)} + \text{BaCl}_2(\text{aq})
\]

How many moles of HCl are consumed if 1.50 g of BaCl2 are produced assuming that Ba(OH)2 is in excess?

Solution:

\[
\frac{g \text{ BaCl}_2}{1.50 \text{ g} \text{ BaCl}_2} \rightarrow \frac{\text{mol BaCl}_2}{\frac{1 \text{ mol BaCl}_2}{208.24 \text{ g BaCl}_2}} \rightarrow \frac{\text{mol HCl}}{\frac{2 \text{ mol HCl}}{1 \text{ mol BaCl}_2}}
\]

Conversions between masses & moles in chemical reactions.

Stoichiometry: Conversions between masses & moles in chemical reactions.

Limiting Reactant:

⇒ When one reactant is present in an amount such that it is completely consumed before all other reactants, we say that it limits the reaction.

⇒ The other reactants are said to be in excess.

⇒ The *Theoretical Yield* is determined by the stoichiometry of the limiting reactant.

⇒ The limiting reactant can only be determined through molar ratios. It cannot be identified by mass.