Oxidation & Reduction Reactions:

Oxidation involves an atom or compound losing electrons

Reduction involves an atom or substance gaining electrons

Neither process can occur alone... that is, there must be an exchange of electrons in the process.

The substance that is **oxidized** is the *reducing agent*

The substance that is **reduced** is the *oxidizing agent*

\[\text{Mg(s)} + 2\text{H}^+(aq) \rightarrow \text{Mg}^{2+}(aq) + \text{H}_2(g) \]

Oxidation Numbers

Chemists use *oxidation numbers* to account for the transfer of electrons in a RedOx reaction.

Oxidation numbers are the actual charge on an atom when combined in a compound.

1. The atoms of pure elements always have an oxidation number of zero.
2. If an atom is charged, then the charge is the oxidation number.
3. In a compound, fluorine always has an oxidation number of \(-1\).
4. Oxygen most often has an oxidation number of \(-2\).
 - When combined with fluorine, oxygen has a positive O.N.
 - In peroxide, the O.N. is \(-1\).
5. In compounds, Cl, Br & I are generally \(-1\) so long as F and O are not present.
6. In compounds, H is \(+1\), except as a hydride (H \(-2\)).
7. For neutral compounds, the sum of the O.N.’s equals zero. For a polyatomic ion, the sum equals the charge.

Examples:

- \(\text{Mg(s)}\) All have an oxidation number of zero (0)
- \(\text{Hg(l)}\)
- \(\text{I}_2(s)\)
- \(\text{O}_2(g)\)
Oxidation Numbers

2. If an atom is charged, then the charge is the oxidation numbers.

 Examples:

<table>
<thead>
<tr>
<th>Ion</th>
<th>Oxidation Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg$^{2+}$(aq)</td>
<td>+2</td>
</tr>
<tr>
<td>Cl$^-$ (aq)</td>
<td>-1</td>
</tr>
<tr>
<td>Sn$^{4+}$(s)</td>
<td>+4</td>
</tr>
<tr>
<td>Hg$_2^{2+}$(aq)</td>
<td>+2/2 = +1 for each Hg atom</td>
</tr>
</tbody>
</table>

3. In a compound, fluorine always has an oxidation numbers of -1.
4. Oxygen most often has an oxidation numbers -2.
 *When combined with fluorine, oxygen has a positive O.N.
 *In peroxide, the O.N. is -1.
5. In compounds, Cl, Br & I are -1 (Except with F and O present)
6. In compounds, H is $+1$, except as a hydride (H$^-$: -1)

 Examples:

Compound	Oxidation Numbers
HF(g)	H = +1 F = -1
H$_2$O(l)	H = +1 O = -2
OF$_2$(g)	O = +2 F = -1
Na$_2$O$_2$(s)	Na = +1 O = -1
HCl(g)	H = +1 Cl = -1
NaH(l)	Na = +1 H = -1

7. For neutral compounds, the sum of the O.N.’s equals zero.
 For a poly atomic ion, the sum equals the charge.

 Examples:

 $+2 + 2 \times (-1) = 0$
 $3 - 4 \times (+1) = 1$

Most common oxidation numbers

- H: +1
- Li+: +1
- Na+: +1
- K+: +1
- Mg$: +2$
- Al$: +3
- F$: -1$
- Cl$: -1
- Br$: -1$
- I$: -1
Oxidation Numbers

Determine the oxidation numbers of manganese in the following compound:

\[+1 \ + \ ? \ + 4 \times (-2) = 0 \]

\[\text{KMnO}_4 \]

Manganese must have an oxidation number of +7!

Oxidation & Reduction Reactions:

Recognizing a Redox Reaction:

In a Redox reaction, the species oxidized and the species reduced are identified by the changes in oxidation numbers:

\[\begin{align*}
\text{Oxidation numbers:} & \quad +1 & 0 \\
2\text{Ag}^+ (aq) + \text{Cu}(s) & \rightarrow 2\text{Ag}(s) + \text{Cu}^{2+} (aq) \\
\text{Oxidation numbers:} & \quad 0 & +2
\end{align*} \]

Since silver goes from +1 to zero, it is reduced. Since copper goes from zero to +2, it is oxidized.

Oxidation & Reduction Reactions:

Electron Transfer in a Redox Reaction:

\[2\text{Ag}^+ (aq) + \text{Cu}(s) \rightarrow 2\text{Ag}(s) + \text{Cu}^{2+} (aq) \]

Two electrons leave copper. The silver ions accept them. The copper metal is oxidized to copper (II) ion. The silver ion is reduced to solid silver metal.
Practice at home:
Identify the species that is **Oxidized** and **Reduced** by assigning oxidation numbers in the following reaction.

\[3\text{CH}_4(g) + \text{Cr}_2\text{O}_7^{2-} (aq) + 8\text{H}^+ (aq) \rightarrow 3\text{CH}_3\text{OH}(l) + 2\text{Cr}^{3+} (aq) + 4\text{H}_2\text{O}(l) \]

Answer:
The carbon in methane (CH\(_4\)) is oxidized (−4 to −2)
Chromium in dichromate is reduced (+6 to +3)

Electrochemical Cells

If a RedOx reaction is spontaneous, the electron flow will have a positive potential which can be used to do work.

When the individual processes are separated by a salt bridge, the electron flow can be completed by a wire.

In the cell, oxidation (loss of electrons) occurs at the **Anode**
reduction (gain of electrons) occurs at the **cathode**

Electrons flow from the anode to the cathode.

The Cu|Cu\(^{2+}\) and Ag|Ag\(^{+}\) Cell

CELL POTENTIAL, \(E_{cell}\)

- For Zn/Cu cell, potential is +1.10 V at 25 °C and when [Zn\(^{2+}\)] and [Cu\(^{2+}\)] = 1.0 M.
- This is the **STANDARD CELL POTENTIAL, \(E^0\)**
- \(E_{cell}\) is a quantitative measure of the tendency of reactants to proceed to products when all are in their standard states at 25 °C.

Not reaction: Cu(s) + 2 Ag\(^{+}\)(aq) \rightarrow Cu\(^{2+}\)(aq) + 2 Ag(s)
CELL POTENTIALS, E°

Individual ½ reaction cell potentials (E°) can’t be measured directly. They are measured relative to a STANDARD HYDROGEN CELL, “SHE”.

$$2 \text{H}^+(aq, 1 \text{ M}) + 2e^- \rightarrow \text{H}_2(g, 1 \text{ atm})$$

$E^\circ = 0.0 \text{ V}$

Standard Redox Potentials, E°

<table>
<thead>
<tr>
<th>CATHODE</th>
<th>Chemical Reaction</th>
<th>E°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu$^{2+}$ + 2e$^-\rightarrow$ Cu</td>
<td>+0.34</td>
<td></td>
</tr>
<tr>
<td>2 H$^+$ + 2e$^-\rightarrow$ H$_2$</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Zn$^{2+}$ + 2e$^-\rightarrow$ Zn</td>
<td>-0.76 ANODE</td>
<td></td>
</tr>
</tbody>
</table>

Northwest-southeast rule:
- reducing agent at southeast corner = ANODE
- oxidizing agent at northwest corner = CATHODE

E°_{net} = “distance” from “top” half-reaction (cathode) to “bottom” half-reaction (anode)

$E^\circ_{\text{net}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}}$

$E^\circ_{\text{cathode}} = +0.799 \text{ V}$ and $E^\circ_{\text{anode}} = +0.337 \text{ V}$.

E°_{net} for Cu/Ag$^+$ reaction = +0.46 V
Cell Notation

oxidized | reduced form | oxidized | reduced form

“||” represents a phase boundary
“|” represents a salt bridge

What is the correct cell notation for an electrolytic cell based on the reaction below?

\[\text{Ag}^+(aq) + \text{Sn}(s) \rightarrow \text{Ag}(s) + \text{Sn}^{2+}(aq) \]

\(\text{Ag}^+\text{(aq)} \) is reduced to \(\text{Ag}(s) \) **Cathode**

\(\text{Sn}(s) \) is oxidized to \(\text{Sn}^{2+}(aq) \) **Anode**

\(\text{Sn}(s) \mid \text{Sn}^{2+}(aq) || \text{Ag}^+(aq) \mid \text{Ag}(s) \)

E\text{cell} at Nonstandard Conditions

\[E_{\text{cell}} = E^\circ_{\text{cell}} - \frac{0.0257 \, \text{V}}{n} \ln Q \]

The NERNST EQUATION

- \(E_{\text{cell}} \) = potential under nonstandard conditions
- \(n = \#. \) of electrons exchanged
- \(\ln = \) “natural log”
- If \([P] \) and \([R] \) = 1 mol/L, then \(E = E^\circ \)
- If \([R] > [P] \), then \(E \) is **lower** than \(E^\circ \)
- If \([R] < [P] \), then \(E \) is **higher** than \(E^\circ \)

Calculate \(E_{\text{cell}} \) for the following electrochemical cell at 25 °C

\(\text{Ag(s)} \mid \text{AgCl(s)} \mid \text{Cl}^-(aq, 0.20 \, \text{M}) || \text{Fe}^{3+}(aq, \text{0.25 M}), \text{Fe}^{2+}(aq, \text{0.25 M}) \mid \text{Pt(s)} \)

given the following standard reduction potentials.

\(\text{AgCl(s)} + \text{e}^- \rightarrow \text{Ag(s)} + \text{Cl}^-(aq) \quad E^\circ = +0.222 \, \text{V} \)

\(\text{Fe}^{3+}(aq) + \text{e}^- \rightarrow \text{Fe}^{2+}(aq) \quad E^\circ = +0.771 \, \text{V} \)

runs in reverse

\[E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} \]

\[E_{\text{cell}} = 0.771 \, \text{V} - 0.222 \, \text{V} = 0.549 \, \text{V} \]
THE EQUILIBRIUM CONSTANT

For any type of chemical equilibrium of the type

\[a \, A + b \, B \rightarrow c \, C + d \, D \]

the following is a CONSTANT (at a given T)

\[
K = \frac{[C]^c [D]^d}{[A]^a [B]^b}
\]

Write the expression for \(K \) for the reaction of ammonium ion with hydroxide ion.

\[\text{NH}_4^+(aq) + \text{OH}^-(aq) \rightleftharpoons \text{NH}_3(aq) + \text{H}_2\text{O}(l) \]

\[(a) \, K = \frac{[\text{NH}_3]}{[\text{NH}_4^+][\text{OH}^-]} \]

\[(b) \, K = \frac{[\text{NH}_4^+][\text{OH}^-]}{[\text{NH}_3]} \]

\[(c) \, K = \frac{[\text{NH}_3]}{[\text{NH}_4^+]} \]

\[(d) \, K = \frac{[\text{NH}_3][\text{H}_2\text{O}]}{[\text{NH}_4^+][\text{OH}^-]} \]

\[(e) \, K = \frac{[\text{NH}_4^+][\text{OH}^-]}{[\text{NH}_3][\text{H}_2\text{O}]} \]

The Reaction Quotient, \(Q \)

In general, ALL reacting chemical systems are characterized by their REACTION QUOTIENT, \(Q \).

\[a \, A + b \, B \rightarrow c \, C + d \, D \]

Under Any Reaction Conditions

\[
\text{Reaction quotient} = Q = \frac{[C]^c [D]^d}{[A]^a [B]^b}
\]

If \(Q < K \), then system will shift to the right, reactants convert to products.
If \(Q > K \), then system will shift to the left, products convert to reactants.
If \(Q = K \), then system is at equilibrium.
The pH Scale: 0 to 14

The pH of a solution provides a way to express the *acidity*, or the concentration of H⁺ in solution:

- low pH = high [H⁺] *acidic solution*
- high pH = low [H⁺] *basic solution*

A pH of 7 indicates that the solution is *neutral*.

Example: A student is given a solution that is labeled pH = 4.72, what is the molarity of H⁺ in this solution?

\[[H^+] = 10^{-pH} \]

Plugging in $10^{-4.72}$ into you calculators yields: 1.90546×10^{-5}

But wait... how many sig. figs. are allowed?

\[10^{-4.72} = 10^{0.28-5} = 10^{0.28} \times 10^{-5} \]

\[10^{0.28} = 1.9 \]

2 sig. figs.!!

Therefore the concentration should be reported as: $1.9 \times 10^{-5} \text{ M}[H^+]$

Reactions in Aqueous Solutions

Aqueous Solutions: *Water as the solvent*

Solution = *solute* + *solvent*

That which is dissolved (lesser amount)

That which is dissolves (greater amount)

There are three types of aqueous solutions:

Those with *Strong Electrolytes* Those with *Weak Electrolytes*

& those with *non-Electrolytes*

Species in Solution, *Electrolytes*:

Strong electrolytes: Characterized by *ions only* (cations & anions) in solution (water).

Weak electrolytes: Characterized by *ions* (cations & anions) & *molecules* in solution.

Non-electrolytes: Characterized by *molecules* in solution.

- Conduct electricity well
- Conduct electricity poorly
- Do not conduct electricity
Reactions of Acids & Bases: Acid-Base Neutralization

Acid + Base → Salt + Water (usually)

\[\text{HA (aq)} + \text{MOH(aq)} \rightarrow \text{MA(aq)} + \text{HOH(l)} \]

Strong acid - Strong base neutralization: \[\text{HBr(aq)}/\text{KOH(aq)} \]

Molecular Equation:

\[\text{HBr(aq)} + \text{KOH(aq)} \rightarrow \text{KBr (aq)} + \text{H}_2\text{O(l)} \]

Total Ionic Equation:

\[\text{H}^+(aq) + \text{Br}^-(aq) + \text{K}^+(aq) + \text{OH}^-(aq) \rightarrow \text{H}^+(aq) + \text{Br}^-(aq) + \text{H}_2\text{O(l)} \]

Net Ionic equation:

\[\text{H}^+(aq) + \text{OH}^-(aq) \rightarrow \text{H}_2\text{O(l)} \]

Solution Stoichiometry

Prior to now, we have discussed reactions in solution from a qualitative aspect.

Reactants → Products

With the addition of molarity to our tools of chemistry, we now can perform quantitative calculations for reactions in aqueous solutions.

volume → moles → moles → grams

grams → moles → moles → volume

Example:

How many grams of calcium carbonate can be consumed by 35.5mL of 0.125 M H\(_2\)SO\(_4\) (aq) ?

Solution: We know that acids react with carbonate salts to produce CO\(_2\)(g)

\[
\text{H}_2\text{SO}_4(aq) + \text{CaCO}_3(s) \rightarrow \text{H}_2\text{O(l)} + \text{CO}_2(g) + \text{CaSO}_4(s)
\]

\[
\text{mL H}_2\text{SO}_4 \rightarrow \text{mol H}_2\text{SO}_4 \rightarrow \text{mol CaCO}_3 \rightarrow \text{g CaCO}_3
\]

\[
35.5\text{mL} \times \frac{1\text{L}}{10^3\text{mL}} \times 0.125 \text{mol H}_2\text{SO}_4 \times \frac{1\text{mol CaCO}_3}{1\text{mol H}_2\text{SO}_4} \times \frac{100.1\text{g CaCO}_3}{1\text{mol CaCO}_3} = 0.444\text{g CaCO}_3
\]

Recall: Strong acid + strong base

Yields: \[\text{H}^+(aq) + \text{OH}^-(aq) \rightarrow \text{H}_2\text{O(l)} \]

Solution:

1. Compute mols H\(^+\) and mols OH\(^-\)
2. Determine limiting reactant and excess of the other.
3. Compute conc. of excess from mols left over and new total volume.
If 50.0 ml of 0.200 M HCl(aq) is added to 50.0 ml of 0.150 M Ba(OH)$_2$ (aq), what is the remaining H$^+$ or OH$^-$ concentration depending on the limiting reactant?

mols OH$^-$ needed to react with mols H$^+$ available:

$$
\begin{align*}
50.0 \text{ ml} \times \frac{1 \text{ L}}{1000 \text{ ml}} \times \frac{0.200 \text{ mol HCl}}{1 \text{ L}} \times \frac{1 \text{ mol H}^+}{1 \text{ mol HCl}} \times \frac{1 \text{ mol OH}^-}{1 \text{ mol H}^+} &= 1.00 \times 10^{-2} \text{ mol OH}^- \\
&= \text{ needed to consume all of the H}^+
\end{align*}
$$

mols OH$^-$ left after reaction with H$^+$:

$$
\text{mols OH}^- \text{ in excess} = \text{mols OH}^- \text{ available} - \text{mols OH}^- \text{ needed} \\
= 1.50 \times 10^{-2} - 1.00 \times 10^{-2} \\
= 5.0 \times 10^{-3}
$$

$$
[\text{OH}^-] = \frac{5.0 \times 10^{-3} \text{ mol OH}^-}{(50.0 \text{ ml} + 50.0 \text{ ml}) \times \frac{1 \text{ L}}{1000 \text{ ml}}} = 0.050 \text{ M OH}^-
$$

If 50.0 ml of 0.200 M HCl(aq) is added to 50.0 ml of 0.150 M Ba(OH)$_2$ (aq), what is the remaining H$^+$ or OH$^-$ concentration depending on the limiting reactant?

mols OH$^-$ needed to consume all of the moles of H$^+$

$$
1.00 \times 10^{-2} \text{ mols OH}^- \text{ needed to consume all of the moles of H}^+
$$

mols OH$^-$ available:

$$
\begin{align*}
50.0 \text{ ml} \times \frac{1 \text{ L}}{1000 \text{ ml}} \times \frac{0.150 \text{ mol Ba(OH)$_2$}}{1 \text{ L}} \times \frac{2 \text{ mol OH}^-}{1 \text{ mol Ba(OH)$_2$}} &= 1.50 \times 10^{-2} \text{ mol OH}^- \text{ available} \\
\text{mols OH}^- \text{ available} > \text{mols OH}^- \text{ needed}, \text{ H}^+ \text{ limits!!!}
\end{align*}
$$

COLLIGATIVE PROPERTIES OF SOLUTIONS

Colligative solution properties are properties that depend directly on the concentration of solute particles in the solution.

Experiments demonstrate that the vapor pressure of water (solvent) above a solution is lower than the vapor pressure of pure water at a given temperature.

When a solute is added to a solvent, the boiling point increases and the freezing point decreases.

Also, when a pure solvent is separated from a solution by a semi-permeable membrane, solvent molecules flow across the membrane towards the solvent side. This phenomenon is known as osmosis.
Boiling Point Elevation:

The *boiling point* of a solution is always higher than the boiling point of the pure solvent of the solution.

\[t_b (\text{solution}) > t_b (\text{solvent}) \]

The difference in boiling point between pure solvent and solution depends on the concentration of solute particles, and is calculated using the following equation:

\[\Delta t_b = nK_bM \]

\[\Delta t_b = t_b(\text{solution}) - t_b(\text{solvent}) \]

- \(K_b \) = bp constant (depends on the substance)
- \(M \) = the molarity of the solution
- \(n \) = total number of particles in solution
 - \(n = 1 \) for molecular compounds
 - \(n = 2 \) for NaCl (Na\(^+\) and Cl\(^-\))

Calculate the freezing point of a solution made up by adding and completely dissolving 4.52g sodium phosphate to 100.0 mL of water.

\[\Delta t_f = nK_fM \]

\[K_f = -1.86^\circ C \frac{M}{mol} \]

Step 1: Calculate the molarity of the solution

\[\text{Na}_3\text{PO}_4(\text{aq}) \rightarrow 3\text{Na}^+(\text{aq}) + \text{PO}_4^{3-}(\text{aq}) \]

- \(n = 3 + 1 = 4 \)

Step 2: Recognize that \(n = 4 \)

Step 3: Enter the values into the equation

\[\Delta t_f = 4 \times \left(-1.86^\circ C \frac{mol}{L} \right) \times 4.52 \text{g Na}_3\text{PO}_4 \times \frac{1 \text{mol Na}_3\text{PO}_4}{163.94 \text{g}} \times \frac{1}{100.0 \text{mL}} \times 10^3 \text{mL} \]

\[\Delta t_f = -2.05^\circ C \]

\[t_f = 0.00^\circ C + \Delta t_f = 0.00^\circ C - 2.05^\circ C = -2.05^\circ C \]

For the general reaction:

\[aA + bB \rightarrow cC + dD \]

\[\text{Rate} = k [A]^x [B]^y \]

Each concentration is expressed with an order (exponent).

The rate constant converts the concentration expression into the correct units of rate (Ms\(^{-1}\)).

- \(x \) and \(y \) are the reactant orders determined from experiment.
- \(x \) and \(y \) are **NOT** the stoichiometric coefficients.
Reaction Orders:
A reaction order can be zero, or positive integer and fractional number.

<table>
<thead>
<tr>
<th>Order</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>zeroth</td>
</tr>
<tr>
<td>1</td>
<td>first</td>
</tr>
<tr>
<td>2</td>
<td>second</td>
</tr>
<tr>
<td>0.5</td>
<td>one-half</td>
</tr>
<tr>
<td>1.5</td>
<td>three-half</td>
</tr>
<tr>
<td>0.667</td>
<td>two-thirds</td>
</tr>
</tbody>
</table>

Rate law Expression:
Rate law Expression: \(\text{Rate} = k [A]^x [B]^y \)

If the rate doubles when \([A]\) doubles and \([B]\) stays constant, the order for \([A]\) is?
one... 1

If the rate remains constant as \([B]\) doubles and \([A]\) is held constant, the order for \([A]\) is?
zero... 0

If the rate triples \([B]\) doubles and \([A]\) reduced by \(\frac{1}{2}\), the order for \([A]\) & \([B]\) are?
Heck if I know... you need to know at least one of 'em to answer this! Ha Ha!

The Overall Order of a reaction is the sum of the individual orders:

\[\text{Rate (Ms}^{-1}) = k[A][B]^{\frac{1}{2}}[C]^2 \]

Overall order: \(1 + \frac{1}{2} + 2 = 3.5 = \frac{7}{2} \)

or seven–halves order

note: when the order of a reaction is 1 (first order) no exponent is written.

EXAMPLE: The reaction,

\[2 \text{NO (g)} + 2 \text{H}_2 (g) \rightarrow \text{N}_2 (g) + 2 \text{H}_2\text{O (g)} \]

is experimentally found to be first order in \(\text{H}_2\) and third order in \(\text{NO}\)

a) Write the rate law.
the "1" in first order is omitted

\[\text{Rate(Ms}^{-1}) = k [\text{H}_2]^{1}[\text{NO}]^3 \]

b) What is the overall order of the reaction?

Overall order = \(1 + 3 = 4 \)

"4th order"

c) What are the units of the rate constant?

\[\text{Rate} = \frac{M}{\text{Ms}} = k \times \text{M} \times \text{M}^3 = k \times \text{M}^4 \]

\[k = \frac{M}{\text{s} \times \text{M}^4} = \text{M}^{-3} \text{s}^{-1} \]
Determining Reaction Order: The Method of Initial Rates

The reaction of nitric oxide with hydrogen at 1280°C is:

\[2\text{NO}(g) + 2\text{H}_2(g) \rightarrow \text{N}_2(g) + 2\text{H}_2\text{O}(g) \]

From the following experimental data, determine the rate law and rate constant.

<table>
<thead>
<tr>
<th>Run</th>
<th>[NO] (_o) (M)</th>
<th>[H(_2)] (_o) (M)</th>
<th>Initial Rate (M/min(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0100</td>
<td>0.0100</td>
<td>0.00600</td>
</tr>
<tr>
<td>2</td>
<td>0.0200</td>
<td>0.0300</td>
<td>0.144</td>
</tr>
<tr>
<td>3</td>
<td>0.0100</td>
<td>0.0200</td>
<td>0.0120</td>
</tr>
</tbody>
</table>

\[
\frac{0.0120 \text{M/min}}{0.00600 \text{M/min}} \times \frac{[0.0200]^y}{[0.0100]^y} = \frac{[0.0200]}{[0.0100]} = 2.00
\]

Taking the ratio of the rates of runs 3 and 1 one finds:

\[
\frac{\text{Rate (run 3)}}{\text{Rate (run 1)}} = \frac{k [\text{NO}]^x [\text{H}_2]^y}{k [\text{NO}]^x [\text{H}_2]^y}
\]

Plugging in the values from the data:

\[
\frac{0.0120 \text{M/min}}{0.00600 \text{M/min}} \times \frac{[0.0200]^y}{[0.0100]^y} = \frac{[0.0200]^y}{[0.0100]^y}
\]

log(2.00) = \log\left(\frac{0.0200}{0.0100}\right)

\[
\log(2.00) = \log\left(\frac{0.0200}{0.0100}\right)
\]

\[
\log(2.00) = y \times \log\left(\frac{0.0200}{0.0100}\right) = y \times \log(2.00)
\]

\[
y = \frac{\log(2.00)}{\log(2.00)} = 1
\]

Now that “y” is known, we may solve for x in a similar manner:

\[
\text{Rate (M/min)} = k [\text{NO}]^x [\text{H}_2]^y
\]
Similarly for x:

The Rate Law expression is:

\[
\text{Rate(M/min)} = k \left[\text{NO}\right]^{3} \left[\text{H}_2\right]
\]

The order for NO was 3

The order for H\(_2\) was 1

The over all order is 3 + 1 = 4

The Rate Law is:

\[
\text{Rate(M/min)} = k \left[\text{NO}\right]^{3} \left[\text{H}_2\right]
\]

rate law expression

To find the rate constant, choose one set of data and solve:

\[
0.0120 \text{ M} \text{ min}^{-1} = k \left(0.0100 \text{ M}\right)^3 \left(0.0200 \text{ M}\right)
\]

\[
k = \frac{0.0120 \text{ M} \text{ min}^{-1}}{\left(0.0100 \text{ M}\right)^3 \left(0.0200 \text{ M}\right)} = 6.00 \times 10^4 \text{ M}^{-3} \text{ min}^{-1}
\]

Homogeneous and Heterogeneous Catalysts

A *homogeneous catalyst* exists in the same phase as that of the reactants.

In the presence of the bromide ion, the decomposition of hydrogen peroxide occurs rapidly:

\[
2\text{H}_2\text{O}_2(aq) \rightarrow 2\text{H}_2\text{O}(l) + \text{O}_2(g)
\]

Step 1:

\[
2\text{Br}^- (aq) + \text{H}_2\text{O}_2(aq) + 2\text{H}^+(aq) \rightarrow \text{Br}_2 (aq) + 2\text{H}_2\text{O}(l).
\]

Step 2:

\[
\text{Br}_2 (aq) + \text{H}_2\text{O}_2(aq) \rightarrow 2\text{Br}^- (aq) + 2\text{H}^+(aq) + \text{O}_2(g).
\]

Net:

\[
2\text{H}_2\text{O}_2(aq) \rightarrow 2\text{H}_2\text{O}(l) + \text{O}_2(g)
\]

Br\(^-\) acts as a catalyst since it regenerates at the end of the reaction.
The E_a for the catalyzed pathway is lower. The reaction takes a “shortcut”, therefore the rate increases!

Consider H_2 bond energy = 218 kJ/mol

On the surface of the metal, there are full orbitals that stick out into space:

When the H_2 sits on the surface, the electrons from the metal can fill the anti-bonding orbital

The bond order becomes zero! Dissociation!

Since the energy of activation is lowered, the reaction proceeds with a faster rate!