- 1) (4 points) Draw linolenic acid ($18.3\Delta^{9,12,15}$).
- 2) (4 points) Why are triacylglycerols better for long-term storage of energy than glycogen is?
 - a) Triacylglycerols exclude water, so they take up less room than glycogen.
 - b) Triacylglycerols can be stored in fat cells, whereas glycogen must be stored in muscle or liver cells.
 - c) There is more energy available per carbon atom in triacylglycerols than in glycogen.
 - d) a and b
 - e) a and c
 - f) all of the above
- 3) (4 points) Why is glycogen better as a quick source of energy than triacylglycerols are?
 - a) Humans have enzymes that break down glycogen, but we do not have enzymes that break down triacylglycerols.
 - b) The glucose in glycogen is more easily accessible than are the fatty acids in triacylglycerols.
 - c) The carbons in glycogen are more oxidized than those in triacylglycerols, so there is more energy available per carbon molecule in glycogen.
- 4) (4 points) Why is fat a solid at room temperature, while vegetable oil is a liquid at room temperature?
 - a) Fat is made of triacylglycerols, whereas oil is not.
 - b) The triacylglycerols in fat contain only saturated fatty acids, whereas the triacylglycerols in vegetable oil contain only unsaturated fatty acids.
 - c) The triacylglycerols in fat contain fewer unsaturated fatty acids than the triacylglycerols in vegetable oil do.
 - d) The triacylglycerols in fat contain more unsaturated fatty acids than the triacylglycerols in vegetable oil do.
- 5) (4 points) Why wouldn't triacylglycerols make good membranes?
 - a) Triacylglycerols are too large to make lipid bilayers.
 - b) Triacylglycerols have no polar region to interact with water.
 - c) Triacylglycerols become hydrolyzed upon exposure to water.
- 6) (4 points) Salts of fatty acids, in aqueous solutions, form
 - a) Triacylglycerols
 - b) Diacylglycerols
 - c) Micelles
 - d) Lipid bilayers

- 7) (4 points) Phosphodiacylglycerols, in aqueous solutions, form...
 - a) Triacylglycerols
 - b) Sphingolipids
 - c) Micelles
 - d) Lipid bilayers
- 8) For questions a-e, refer to the following structures:

- a) (2 points) Which structure is a triacylglycerol?
- b) (2 points) Which structure is a sphingolipid?
- c) (2 points) Which structure is a phospholipid?
- d) (2 points) Which structure is an eicosanoid?
- e) (2 points) Which structure is a steroid?
- 9) (4 points) Steroid hormones and eicosanoids are functionally similar in that...
 - a) Both are found in lipid bilayers.
 - b) Both are intracellular messengers.
 - c) Both are intercellular messengers.
 - d) Both contain a steroid nucleus.
 - e) All of the above.

10) (4 points) Steroid hormones and eicosanoids differ in that

- a) Eicosanoids do not contain the steroid nucleus.
- b) Eicosanoids are made from arachadonic acid, whereas steroid hormones are made from chlosterol.
- c) Eicosanoids are local messengers, whereas steroid hormones are long-distance messengers.
- d) All of the above.

11) (4 points) Vitamin D...

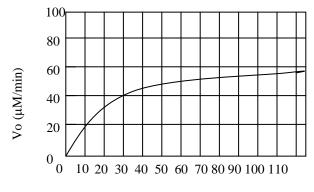
- a) is formed by a non-enzymatic reaction in the body
- b) is made from cholesterol
- c) maintains healthy bones
- d) prevents breast cancer an prostate cancer
- e) all of the above

Use the following information to answer questions 11-14:

Two different species of bacteria have been isolated from two very different environments: one, a hot spring with an average water temperature of 40°C, and the other a glacial lake with an average water temperature of -4° C.

- 12) (4 points) Which of the two bacterial species would be expected to have more unsaturated fatty acids in its membrane lipids?
 - a) The hot spring bacteria
 - b) The glacial lake bacteria

13) (4 points) At 27°C, which species would have a more fluid membrane?


- a) The hot spring bacteria
- b) The glacial lake bacteria
- 14) (4 points) Why does the glacial lake bacteria contain cholesterol in its membrane?
 - a) To increase membrane fluidity.
 - b) To decrease membrane fluidity.
 - c) To increase the production of lipid intracellular signaling molecules.
 - d) To stabilize membrane proteins.
 - e) To increase the membranes' permeability to water.
- 15) (4 points) Which of these properties distinguish enzymes from other catalysts?
 - a) Enzymes lower the energy of activation of a reaction.
 - b) Enzymes become denatured at high temerature.
 - c) Enzymes speed up a reaction.
 - d) Enzymes are not consumed in the reaction they catalyze
 - e) All of the above.
- 16) (8 points) Sketch energy diagrams for a reaction with and without a catalyst. Label all parts of the diagram.

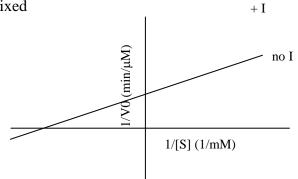
- 17) (3 points) In some enzymes, components other than amino acid residues are necessary for activity. These components are called ______. In such enzymes, the complete, active enzyme is called a(n) ______, and the enzyme without its additional components is called a(n) ______.
- 18) (4 points) For the situations described below, use the following symbols to indicate whether V_{max} will increase (\uparrow), decrease (\downarrow), or remain constant (=).
 - a) After [S] has been doubled: _____
 - b) In the presence of a mixed inhibitor:
 - c) In the presence of a competitive inhibitor:
 - d) In the presence of an uncompetitive inhibitor:
 - e) After the enzyme concentration has been doubled:

19) (1 point) The relatively small portion of an enzyme that is involved in substrate binding is

known as the _____. (2 words)

For questions 20 an 21, refer to the Michaelis-Menten Plot below. This graph depicts the effects of increasing substrate concentration ([S]) on the initial rate of a reaction. The concentration of enzyme in this experiment was held constant at $0.1 \mu M$.

[S] (mM)


20) (4 points) What is the approximate K_m of this enzyme with this substrate?

- a) $60 \ \mu M/min$
- b) $30 \,\mu M/min$
- c) $16 \,\mu\text{M/min}$
- d) 16 mM

21) (4 points) What is the approximate k_{cat} of this enzyme with this substrate?

- a) $60 \ \mu M/min$
- b) 600 min^{-1}
- c) 60 min^{-1}
- d) 6.0 min^{-1}

- 22) (4 points) The Lineweaver-Burk Graph below depicts an enzyme in the absence and presence of its inhibitor (I). What type of inhibitor is this?
 - a) competitive
 - b) uncompetitive
 - c) mixed

23) (6 points) Draw D-glucose in its linear form.

24) (6 point) Mannose is an epimer of glucose at C2. Draw β -D-mannose.

25) (10 points) Draw sucrose (α -D-glucopyranose-(1-2) β -D-fructofuranose).

- 26) (4 points) Which of these polysaccharides would be degraded the fastest by the enzyme amylase?
 - a) Cellulose
 - b) Amylose
 - c) Glycogen
 - d) Amylopectin

27) (4 points) Structurally, what are the similarities between cellulose and amylose?

- a) They both contain $\beta 1 \rightarrow 4$ linkages.
- b) They both contain $\alpha 1 \rightarrow 4$ linkages.
- c) They both contain $1 \rightarrow 4$ linkages.
- d) They both contain glucose monomers.
- e) a and d
- f) c and d

28) (4 points) Structurally, how does cellulose differ from amylose?

- a) Cellulose is a straight chain, whereas amylose is branched.
- b) Cellulose is a straight chain, whereas amylose is curled into a helix or spiral.
- c) Cellulose contains $\alpha 1 \rightarrow 4$ linkages, whereas amylose contains $\beta 1 \rightarrow 4$ linkages.
- d) Cellulose contains $\beta 1 \rightarrow 4$ linkages, whereas amylose contains $\alpha 1 \rightarrow 4$ linkages.
- e) b and c
- f) b and d

29) (4 points) When a protein is denatured, entropy

- a) increases
- b) decreases
- c) stays the same

30) (4 points) Which of the following structures represents adenine?

a)

31) (5 points) Base-pair this molecule with its complementary base, showing all hydrogen bonds.

32) (4 points) Biologically, why is it advantageous for DNA to be stable, but for RNA to be unstable?

- a) RNA must be able to mutate, whereas DNA cannot.
- b) DNA must be able to mutate, whereas RNA cannot.
- c) The information in DNA must be passed to offspring, whereas the information in RNA is only used temporarily.
- d) a and c
- 33) (4 points) When the ionic strength of a DNA solution is increased, the melting temperature of the DNA
 - a) decreases
 - b) increases
 - c) remains the same
- 34) (4 points) Draw a Fisher projection of glycine.

35) (4 points) Draw a Fisher projection of L-alanine.

36) (4 points) Why is alanine optically active, while glycine is not?

37) (1 point) Which (one) amino acid allows the least flexibility when found in a protein?

38) (3 points) List three amino acids whose side chains are completely hydrophobic.

a)

b)

c)

39) (4 points) What makes peptide bonds planar?

- a) They hydrogen bond to other peptide bonds in the backbone.
- b) The presence of a carboxylic acid makes them planar.
- c) The amide linkage makes the bond polar.
- d) The C-N bond has a partial double-bond character, due to resonance.
- 40) (4 points) Which one of the following amino acids would be <u>least</u> likely to interact with the backbone of DNA at physiological pH?
 - a) Lysine
 - b) Arginine
 - c) Histidine

41) (1 point) A single unit within a polymer (for example, a single amino acid within a

polypeptide chain) is known as a ______.

42) (4 points) A polypeptide 9 amino acids long is treated with the following reagents. The amino acid sequences of the resulting fragments are listed below. Determine the primary sequence of the polypeptide.

pepsin

- 1. tyr-gly-met
- 2. ala-met-his
- 3. trp-pro-gly

cyanogen bromide

- 1. his-tyr-gly-met
- 2. trp-pro-gly
- 3. ala-met
- a) tyr-gly-met-trp-pro-gly-ala-met-his
- b) trp-pro-gly-ala-met-his-tyr-gly-met
- c) ala-met-his-tyr-gly-met-trp-pro-gly
- d) tyr-gly-met-his-trp-pro-gly-ala

43) (4 points) Use this table to calculate the isoelectric point for Asp-Ser.

Amino Acid	pK _{NH3+}	рК _{СООН}	pK _R
Aspartic Acid	9.90	1.99	3.90
Serine	9.21	2.19	

a) 2.95

b) 3.05

c) 6.55

- d) 7.00
- e) 6.90

44) (4 points) How many amino acid residues are needed to make a β turn?

- a) 2
- b) 4
- c) 8
- d) 10-11

45) (4 points) How is a β turn stabilized?

- a) By one hydrogen bond between the peptide backbone.
- b) By many hydrogen bonds between the peptide backbone.
- c) By hydrogen bonds, ionic bonds, and hydrophobic interactions
- d) By a covalent bond between cysteine side chains.

46) (1 point) What general type of reaction forms water?

- 47) (4 points) At a pH equal to the pK_a of a weak acid, what can be said about the concentrations of the acid and its conjugate base?
 - a) There is no base present, only acid.
 - b) They are equal.
 - c) There is no relationship between pKa and concentration.
- 48) (4 points) The pK_a's for the three ionizable groups on tyrosine are: pK_1 (-COOH) = 2.2, pK_2 (-NH₃⁺) = 9.11, and pK_R = 10.07. In which pH range will this amino acid have the greatest buffering capacity?
 - a) at all pH's between 2.2 and 10.07
 - b) at pH's near 7.1
 - c) at pH's between 9 and 10
 - d) at pH's near 5.7
 - e) Amino acids cannot act as buffers