Finance

\[F = \text{Future or Maturity Value} \]

\[P = \text{Present Value} \]

\[r = \text{Interest Rate} \]

\[n = \text{Compounding Period} \]

\[t = \text{Time} \]

Simple Interest
(Less than one Year)

Interest

\[I = Prn \]

\[I = F - P \]

Future Value

\[F = P(1 + rt) \]

Present Value

\[P = \frac{F}{1 + rt} \]

Compound Interest

Future Value

\[F = P\left(1 + \frac{r}{n}\right)^{nt} \]

Present Value

\[P = F\left(1 + \frac{r}{n}\right)^{-nt} \]
Annuities (Regular Payments or Deposits)

\[F = \text{Future or Maturity Value} \]
\[P = \text{Present Value} \]
\[R = \text{Periodic Payments or Deposits} \]
\[r = \text{Interest Rate} \]
\[n = \text{Compounding Period} \]
\[t = \text{Time} \]

Ordinary Annuity (Sinking Fund)

Future Value
\[F = R \left(\frac{\left(1 + \frac{r}{n}\right)^{nt} - 1}{\frac{r}{n}} \right) \]

Payment at the end of each period

Loan Payments

\[P = \text{Loan Amount} \quad R = \text{Periodic Payment} \]

Monthly payments
\[R = P \left[\frac{\frac{r}{n}}{1 - \left(1 + \frac{r}{n}\right)^{-nt}} \right] \]

Present Amount
\[P = R \left[\frac{1 - \left(1 + \frac{r}{n}\right)^{-nt}}{\frac{r}{n}} \right] \]