Abe Mirza

Finance

$$F = P(1 + \frac{r}{n})^{nt}$$

F =Future Value

P =Present Value

t = time in years

r = rate

n =Compounding periods((how often the interest is added to the principle)

Ex 1. If \$4000.00 is invested at an interest rate of 6% for 10 years at different compounding periods, then find the **future value** and total interest for each case.

Compounding Period	Future Value	Total Interest $I = F - P$
Annually $n = 1$ $r = 7\%$	$F = 4000(1 + \frac{0.06}{1})^{1(10)} = 7163.39$ $F = 4000(1 + \frac{0.07}{1})^{1(10)} = 7868.61$	I = 7163.39 - 4000 = 3163.39 I = 7868.61 - 4000 = 3868.61 By 1% higher rate, gain of \$705.22
r = 8%	$F = 4000(1 + \frac{0.08}{1})^{1(10)} = 8635.70$	I = 8635.70 - 4000 = 4635.70 By 2% higher rate, gain of \$1472.31
Semiannually $\mathbf{n} = 2$	$F = 4000(1 + \frac{0.06}{2})^{2(10)} = 7224.44$	I = 7224.44 - 4000 = 3224.44
Quarterly $\mathbf{n} = 4$	$F = 4000(1 + \frac{0.06}{4})^{4(10)} = 7256.07$	I = 7256.07 - 4000 = 3256.07
Monthly $\mathbf{n} = 12$	$F = 4000(1 + \frac{0.06}{12})^{12(10)} = 7277.59$	I = 7277.59 - 4000 = 3277.59
Daily n = 365	$F = 4000(1 + \frac{0.06}{365})^{365(10)} = 7288.12$	I = 7288.12 - 4000 = 3288.12

1

Practice Problems

$$F = P(1 + \frac{r}{n})^{nt}$$

F =Future Value

P =Present Value

t = time in years

r = rate

n = Compounding periods((how often the interest is added to the principle)

A: If \$1000.00 is invested at an interest rate of 9% for 15 years at different compounding periods, find the **future value** and effective interest rare for each case.

Compounding Period	Future Value	Total Interest $I = F - P$
Annually $\mathbf{n} = 1$		
	Answer:\$3642.48	Answer:\$2642.48
Semiannually $\mathbf{n} = 2$	Answer:\$3745.32	Answer:\$2745.32
Quarterly $\mathbf{n} = 4$		
	Answer:\$3800.13	Answer:\$2800.13
Monthly $\mathbf{n} = 12$		
	Answer:\$3838.04	Answer:\$2838.04
Daily n = 365		
	Answer:\$3856.78	Answer:\$2856.78

Present Value

Ex 2: A company has agreed to pay \$2.4 million in 5 years to settle a law suit. How much must they invest now in an account paying 8% with compounding periods to have that amount when it is due?

$$F = P(1 + \frac{r}{n})^{nt}$$

Compounding Period	Present Value		
Annually n = 1	$2.4 = P(1 + \frac{.08}{1})^{1(5)} \qquad 2.4 = P(1.08)^5$		
	2.4 = P(1.4693) P = 2.4/1.4693 = 1.6334	million	
Semiannually $\mathbf{n} = 2$			
		Ans:\$ 1.6214	million
Quarterly $\mathbf{n} = 4$			
		Ans:\$ 1.61513	million
Monthly $\mathbf{n} = 12$			
		Ans:\$ 1.6109	million
Daily n =			
		Ans:\$ 1.6088	million

Practice Problems

A company has agreed to pay \$4.5 million in 10 years to settle a law suit. How much must they invest now in an account paying 9 % with compounding periods to have that amount when it is due?

Compounding Period	Present Value	
Annually n =		
	Ans:\$ 1.901	million
Semiannually n =		
	Ans:\$ 1.8659	million
Quarterly n =	Ans:\$ 1.8479	million
Monthly n =	Ans:\$ 1.8356	million
Daily n =		
Duny n –	Ans:\$ 1.8298	million

Solving for t(time) and r(rate) by trials and error.

C: How long will \$25,000 investment need to results to a future value of \$40,000? The interest rate is 6% compounded monthly.

$$40,000 = 25,000(1 + \frac{.06}{12})^{12t} \qquad \qquad 40,000 / 25000 = (1.005)^{12t} \qquad \qquad 1.6 = (1.005)^{12t}$$

Then try to pick different t values that make the equation $1.6 = (1.005)^{12}t$ work

D: How long will \$50,000 investment need to result a future value of \$88,000? The interest rate is 8% compounded semi annually.

E: How long will \$180,000 investment take to results to a future value of \$230,000? The interest rate is 4.5% compounded monthly.

F: At what interest rate will \$20,000 investment need to result a future value of \$45,000 if the money is kept in 20 years? Assuming it is compounded semi annually.

G: At what interest rate will \$25,000 investment need to result a future value of \$45,000 if the money is kept in 10 years? Assuming it is compounded monthly.

Compound Interest Worksheets

Name

Calculate the total amount of the investment or total paid in a loan in the following situations:

1.) Your 3 year investment of \$20,000 received 5.2% interested compounded semi annually. What is your total return?

Answer: \$23,329.97

2.) You borrowed \$59,000 for 2 years at 11% which was compounded annually. What total will you pay back?

Answer: \$72,693.90

3.) Your allowance of \$190 got 11% compounded monthly for 1 2/3 years. What's it worth after the 1 2/3 years?

Answer: \$228.04

4.) Your 6 1/4 year investment of \$40,000 at 14% compounded quarterly is worth how much now?

Answer: \$94,529.80

5.) You borrowed \$1,690 for 5 1/2 years a at 5.7% compounded semi annually. What total will you pay back?

Answer: \$2,176.33

6.) Your \$440 gets 5.8% compounded annually for 8 years. What will your \$440. be worth in 8 years?

Answer: \$690.78

7.) Your \$54,200 2 year car loan is at 15.1% compounded annually. What will you have paid for your car after 2 years?

Answer: \$71,804.21

8.) You invest \$55 at 10% compounded annually for 3 years. How much will your investment be worth in 3 years?

Answer: \$73.21

9.) Your 8 year loan of \$12,200 is at 5.3% compounded annually. How much will you have paid in total for your loan?

Answer: \$18,441.10

10.) You invest \$1,900 at 4% and it's compounded semi annually for 3 years. How much will your \$1,900 be worth in 3 years?

Answer: \$2,139.71

Applications of compound interest		
Date;	Section;	NAME
	ch problem. Show all work.	
1.	How much money will you l	have in 6 years if you invest \$5000 at 4 ½ % compounded monthly? 1)
2.	What interest rate do you r	need for a \$4000 investment to double in 12 years?
		2)
	Hayr much manay da yar n	need to invest at 4 % in order to have \$10,000 after 8 years?
J.	now mach money do you n	reed to livest at 4 % in order to have \$10,000 after 8 years:
		3)
4.	How much money will you l	have in 4 months if you invest \$2000 at 4% compounded monthly?
		4)
	How much interest will you annually?	earn in 10 years if you invest \$8500 at 4 ¼ % compounded semi-
		5)
		<u>-,</u>
	In 1995, the population of Nof 2.5%, what was the popu	Math Valley was 18,000. If the population is increasing at an annual rate lation in 2015?
1		6)

7. A certain species of bird is in danger of becoming extinct. There were 1 are decreasing at an annual rate of 5.6%.	1600 birds in 2000 and they
a) If this trend continues, how many birds will be left by 2015?	7a)
b) How many birds would there have been in 1995?	7b)
8. How much money would you need to deposit today at 5% annual interest c have \$16,000 in the account after 9 years?	ompounded quarterly to
	8)
How much money do you need to invest at 3.2% compounded daily in a end of 10 years?	order to have \$15,500 at the
	0)
	9)
10. If you deposit \$2500 into an account paying 11% annual interest compound there is \$4500 in the account?	ded quarterly, how long until
	10)