Abe Mirza

Solving Equations

Algebra

- **1.** Solve the equation 14y + 26y + 5 = 39y
- 3. Solve the equation 3n+14-22-12=6n
- 5. Solve the equation $\frac{2}{4}x+1=\frac{1}{4}x+6$
- 7. Solve the equation 6(4x+1) = 2(2x+3)
- **9.** Solve the equation -(6k-5)+(-5k+8)=-3
- 11. Solve the inequality 2x-5 > -2x+6
- **13**. Solve the inequality 8(t-3) < -4(t-3)

- **2.** Solve the equation x 0.9x + 0.1 = 0.3(x+1)
- **4.** Solve the equation 2(y+5)-4=6(y+2)+2
- **6.** Solve the equation $\frac{2x}{3} + \frac{x}{2} = -\frac{3}{2} + \frac{x}{3}$
- 8. Solve the equation $\frac{1}{6}(y+18) + \frac{1}{3}(2y+3) = y+3$
- **10**. Solve the equation 0.30(x+15) 0.40(x+25) = 25
- 12. Solve the inequality 1 < 2x 7 < 9
- **Answers**

1
$$y = -5$$

- 1 y = -5 2. x = -1 3. n = -20/3
- **4.** y = -2 **5.** x = 20 **6.** x = -9/5
- 7. x = 0

- **9**. k = 16/11 **10**. x = -305
- **11.** x > 11/4
- **12**. 4 < *x* < 8
- **13**. *t* < 3

Abe Mirza

Slope and Equation of a Line

Algebra

Given two points $(x_1, y_1), (x_2, y_2)$, The **slope** of the line that goes though these two points will be

Slope =
$$\mathbf{m} = \frac{Change \ in \ y}{Change \ in \ x} = \frac{Rise}{Run} = \frac{y_2 - y_1}{x_2 - x_1}$$

If m > 0 line always goes from South West to North East

If m < 0 line always goes from North West to South East

If m = 0 line is always (Horizontal Line)

If m = undefined line is always (Vertical Line)

Practice: Find the slope of the lines through points (-8, -6) and (-4, 15) m =

Slope –Intercept Form: y = mx + bm = Slope, b = y-intercept

Note: If two lines have the same slope they will be parallel. y = -8x + 12 y = -8x - 5

Vertical Lines: x = a, x = 3, x = -4**Horizontal Lines:** y = b, y = 7, y = -2

Finding x and y intercepts in an equation of line:

Finding **y-intercept**, let x = 0, solve for y Finding **x-intercept**, let y = 0, solve for x \Leftrightarrow

Example: Find x and y intercepts in equation 2x - 3y = 12

Finding **x-intercept**, let
$$y = 0 \implies 2x - 3y = 12$$
 $2x - 0 = 12$, $2x = 12$, $x = 6$
Finding **y-intercept**, let $x = 0 \implies 2x - 3y = 12$ $0 - 3y = 12$, $y = -4$

Example: Find x and y intercepts in equation
$$y = -\frac{1}{2}x + 5$$
 Ans: $x = 10$, $y = 5$

Perpendicular lines: their slopes are negative reciprocal of each other $m_1 = \frac{-1}{m_2}$, y = 2x + 3, $y = \frac{-1}{2}x + 3$

	How to find the Equation of a line $y = mx + b$				
Case	Given	How	Example		
1	m = Slope,	Substitute them into	m = -2, $b = y$ -intercept = 3 Substitute them		
	b = y-intercept	equation	into equation $y = -2x + 3$		
2	m = Slope, and a	Substitute them into	Find the equation of the line that passes through		
	point = (x, y)	equation $y = m x + b$ and	point $(-8,6)$ and its slope = $\mathbf{m} = -2$		
		then solve for b	6 = -2(-8) + b, $6 = 16 + b$, $b = -10$		
			Substitute them into equation $y = -2x - 10$		
3	Passes though	First find slope and then	Find the equation of the line that passes through		
	two points	use (x_1, y_1) like case 2	points (-5,8) and (5,18)		
	$(x_1, y_1), (x_2, y_2)$		$m = \frac{18-8}{5-(-5)} = \frac{10}{10} = 1$, $y = mx + b$		
			$m = \frac{1}{5 - (-5)} = \frac{1}{10} = 1$, $y - mx + b$		
			$8 = 1(-5) + b$, $\Rightarrow 13 = b$ $y = x + 13$		
4	m = 0	Always a	Find the equation of the line that passes through		
	and passes though	Horizontal Line:	point $(-4, -6)$ and its $slope = \mathbf{m} = 0$		
	$\mathbf{point}(x_1, y_1)$	$y = 0 + b = y_1$	$y = 0 + b = y_1 = -6$ $y = -6$		
5	, , Number	Always a	Find the equation of the line that passes through		
	$m = undefined = \frac{Number}{0}$	Vertical Line:	point $(3,7)$ and its slope = \mathbf{m} = undefined		
	and passes though	$x=x_1,$	A vertical line, so its equation is $x = 3$		
	$\mathbf{point}(x_1, y_1)$				
6	Passes though	The new slope = m of the	Find the equation of the line that passes through		
	$point(x_1, y_1)$	parallel line and then do	point (-4,7) and is parallel to its line		
	and is parallel to	like case 2	y = -2x - 10		
	a given line		The line has slope of $= m = -2$		
			7 = -2(-4) + b, $1 = 8 + b$, $b = 1$		
			y = -2x + 1		
7	Passes though	The new slope will be	Find the equation of the line that passes through		
	$point(x_1, y_1)$	the $m_2 = -1/m_1$ of the	point (-4,7) and is parallel to its line		
	and is perpendicular	given equation, Having	y = -2x - 10		
	to a given line	slope m_2 and (x_1, y_1)	The line has slope of = $m = -1/-2 = 1/2 = .5$		
		then do like case 2	7 = .5(-4) + b, $7 = -2 + b$, $b = 9$ $y = .5x + 9$		

- Find the equation of a line that

P.1) passes through point
$$(0,1)$$
 and its slope = $m = -1$

P.2) passes through point (-9,4) and its slope =
$$m = \frac{2}{3}$$

$$P.3$$
) passes through points $(3,5)$ and $(8,15)$

P.4) passes through points
$$(-1, -3)$$
 and $(2, -1)$

Ans:
$$y = -x + 1$$

Ans:
$$y = \frac{2}{3}x + 10$$

Ans:
$$y = 2x - 1$$

Ans:
$$y = \frac{2}{3}x - \frac{7}{3}$$

P.5) passes through points $(0,3)$ and $(5,0)$	Ans:	$y = -\frac{3}{5}x + 3$
P.6) passes through point $(3,0)$ and its y intercepts $(0,-1/5)$	Ans:	$y = \frac{1}{15}x - \frac{1}{5}$
P.7) passes through point $(-2, -3)$ is parallel to $3x + 2y = 5$		$y = -\frac{3}{2}x - 6$
P.8) passes through point (0, 3) and perpendicular to $3x + 2y = 5$	Ans:	$y = \frac{2}{3}x + 3$
P.9) passes through point $(-3,5)$ and undefined slope	Ans:	x = -3
P.10) passes through point $(-2, -3)$ is parallel to x axis	Ans:	y = -3
P.11) passes through point $(-2, -3)$ is parallel to y axis	Ans:	x = -2:
P.12) passes through point (5, 4) is perpendicular to x axis	Ans:	<i>x</i> = 5
P.13) passes through point (5,4) is perpendicular to y axis	Ans:	y = 4:

	Rule	Form	Example	Practice
1	Product	$a^m a^n = a^{m+n}$	$a^4a^7 = a^{11}, a^{-8}a^{15} = a^7$	$a^6a^{13} = , a^{-5}a^{12} =$
2	Quotient	$\frac{a^m}{a^n} = a^{m-n}$	$a^{4}a^{7} = a^{11}, a^{-8}a^{15} = a^{7}$ $\frac{a^{8}}{a^{3}} = a^{5}, \frac{a^{3}}{a^{11}} = a^{3-11} = a^{-8}$	$\frac{a^{14}}{a^5} = $, $\frac{a^5}{a^9} =$
3	Power	$\left(a^{m}\right)^{n}=a^{mn}$	$\left(a^2\right)^7 = a^{14}, \left(a^{-3}\right)^{-4} = a^{12}$	$\left(a^{-5}\right)^3 = \left(a^{-3}\right)^{-4}$
4	Power of Product	$(ab)^n = a^n b^n$	$(2x)^3 = 2^3 x^3, (5b^2)^3 = 5^3 b^6$	$(4b)^6 = , (a^3b^{-2})^{-4} =$
5	Power of Quotient		$\left(\frac{3}{2}\right)^5 = \frac{3^5}{2^5}, \left(\frac{2^3}{3^4}\right)^2 = \frac{2^6}{3^8}$	$\left(\frac{5}{3}\right)^7 = , \left(\frac{4^{-3}}{5^4}\right)^{-2} =$
6	Zero Exponent	$a \neq 0$, $a^0 = 1$	$2^0 = 1$, $(-3)^0 = 1$, $\left(\frac{3}{7}\right)^0 = 1$	$7^0 = , (-18)^0 = , \left(\frac{17}{5}\right)^0 =$
7	Negative Exponent	$a^{-n} = \frac{1}{a^n}$	$a^{-3} = \frac{1}{a^3}, 4^{-5} = \frac{1}{4^5}$	$x^{-7} = , (-3)^{-5} =$
8	Negative Exponent	$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$	$\left(\frac{2}{3}\right)^{-4} = \left(\frac{3}{2}\right)^4, \left(\frac{7}{4}\right)^{-3} = \left(\frac{4}{7}\right)^3$	$\left(\frac{1}{5}\right)^{-3} = , \left(\frac{9}{1}\right)^{-2} =$
9	Switching Negative Power	$\frac{a^{-m}}{b^{-n}} = \frac{b^n}{a^m}$	$\frac{a^{-2}}{b^{-3}} = \frac{b^3}{a^2}, \frac{2^{-8}}{b^{-6}} = \frac{b^6}{2^8}$	$\frac{7^{-2}}{x^{-3}} = , \frac{3^{-3}}{3^{-8}} =$
10	Fractional Exponent	$a^{\frac{1}{n}} = \sqrt[n]{a}$	$a^{\frac{1}{3}} = \sqrt[3]{a}$, $7^{\frac{1}{4}} = \sqrt[4]{7}$	$9^{\frac{1}{2}} =$, $x^{\frac{1}{9}} =$
11	Fractional Exponent	$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$3^{\frac{5}{2}} = \sqrt[2]{3^5}$, $x^{\frac{3}{7}} = \sqrt[7]{x^3}$	$11^{\frac{6}{7}} = , b^{\frac{11}{5}} =$

Factorization

Basic

$$18x + 36 = 18(x+2)$$

$$65y^{10} + 35y^6 = 5y^6(13y^4 + 7)$$

$$8m^3n + 24mn^3 = 8mn(m^2 + 3n^2)$$

$$13y^8 + 26y^4 - 39y^2 = 13y^2(y^6 + 2y^2 - 3)$$

Grouping p(p+4)+3(p+4)=(p+4)(p+3)

$$18r^{2} + 12ry - 3xr - 2xy = 6r(3r + 2y) - x(3r + 2y) = (3r + 2y)(6r - x)$$

2 Terms $a^2 - b^2 = (a+b)(a-b)$

$$9x^{2} - 25y^{2} = (3x + 5y)(3x - 5y)$$

$$16k^{4} - 1 = (4k^{2} + 1)(4k^{2} - 1) = (4k^{2} + 1)(2k + 1)(2k + 1)$$

3 Terms $x^2 + bx + c$ when Sum = b and Product = c

$$x^{2} + 5x + 6$$
 $S = 5$ $P = 6$ 2,3 $x^{2} - 2x - 15$ $S = -2$ $P = -15$ 3,-5 $(x+2)(x+3)$

3 Terms $ax^2 + bx + c$ when Sum = b and Product = ac

$$4x^2 + 3x - 10$$
 $S = 3$ and $P = 4(-10) = -40$ $8, -5$
 $4x^2 + 8x - 5x - 10 = 4x(x+2) - 5(x+2) = (x+2)(4x-5)$

$$21m^2 + 13x + 2$$
 $S = 13$ and $P = 21(2) = 42$ $7,6$
 $21m^2 + 7m + 6m + 2 = 7m(3m+1) + 2(3m+1) = (3m+1)(7m+2)$

3 Terms $ax^2 + 2abx + c^2$ Two Squared Terms (Check doubling effect)

$$x^{2} + 10x + 25 = (x+5)^{2}$$
 $3x^{2} - 48x + 192 = 3(x^{2} - 16x + 64) = 3(x-8)^{2}$

$$49x^{2} - 28xy + 9y^{2} = (7x - 3y)^{2} \qquad m^{2} + \frac{2}{3}m + \frac{1}{9} = (m + \frac{1}{3})^{2}$$

Practice problems (Factor each problem)

1.
$$15x^3 - 30x^2$$
 2. $100a^5 + 16a^3$ **3.** $x^6y^2 + 5x^4y^3 - 6xy^4 + 10xy$

4.
$$3a^3 + 3ab^2 + 2a^2b + 2b^3$$
 5. $c(x+2) - d(x+2)$ **6.** $x^2 + 15x + 44$

7.
$$x^2 + 6x - 27$$
 8. $x^2 - 14x + 24$ 9. $n^2 - 12n - 35$

Answers

$$1.15x^2(x-2)$$

2.
$$4a^3(25a^2+4)$$

1.
$$15x^2(x-2)$$
 2. $4a^3(25a^2+4)$ **3.** $xy(x^4y+5x^3y^2-6y^3+10)$

4.
$$3a(a^2+b^2)+2$$

4.
$$3a(a^2+b^2)+2b(a^2+b^2)=(a^2+b^2)(3a+2b)$$
 5. $(x+2)(c-d)$ **6.** $(x+4)(x+11)$ **7.** $(x+9)(x-3)$

6.
$$(x+4)(x+11)$$

7.
$$(x+9)(x-3)$$

8.
$$(x-12)(x-2)$$

Practice Test (Exponents, Polynomials, Factoring)

Simplify the expression

1.
$$x^3x^{-5}x^{-14}$$

2.
$$\frac{-2t^3}{t^{-15}}$$

3.
$$\frac{(5^{-2})^3}{5^{-4}}$$

4.
$$\frac{10^{10}}{0}$$

5.
$$\frac{y^{-12}}{v^4}$$

2.
$$\frac{-2t^3}{t^{-15}}$$
 3. $\frac{(5^{-2})^3}{5^{-4}}$ 4. $\frac{10^{10}}{0}$ 5. $\frac{y^{-12}}{y^4}$ 6. $(10y)^9(10y)^{-8}$

7.
$$-((8)^{-2})$$

8.
$$(3)^{-0} - (-23)^{0}$$

7.
$$-((8)^{-2})$$
 8. $(3)^{-0} - (-23)^{0}$ 9. Add $(2y^{2} - 8y + 8) + (-3y^{2} + 2y + 3) - (y^{2} + 3y - 6)$

$$10. \ \frac{k^{-9}k^{-5}}{k^2k^{-7}}$$

10.
$$\frac{k^{-9}k^{-5}}{k^{2}k^{-7}}$$
 11. $(3a^{-3}b^{2})(2a^{3}b^{-5})$ **12.** $5^{-1}+10^{-1}$ **13.** $(-3r^{-3})^{-3}$

12.
$$5^{-1} + 10^{-1}$$

13.
$$(-3r^{-3})^{-3}$$

14
$$\left(\frac{x^4 y^{-2}}{x^3}\right)^{-3}$$

15.
$$\frac{(m^{-6}n^7)^{-2}}{m^2n^5}$$

16.
$$\frac{(a^{-3}b^2)^2}{2(a^4b^3)^{-1}}$$

15.
$$\frac{(m^{-6}n^7)^{-2}}{m^2n^5}$$
 16. $\frac{(a^{-3}b^2)^2}{2(a^4b^3)^{-1}}$ 17. Multiply $(-4r+11)(2r+3)$

18. Multiply
$$(7x + 8s)^2$$

19. Multiply
$$(m+9)(3m+2)$$

20. Multiply
$$(3x+8y)(3x-8y)$$

21. Multiply
$$(p-2)(p^4-2p^3-3)$$

22
$$p(x) = -6x^2 - 18x - 2$$
, then Evaluate. $p(-2)$

23. Factor
$$81x^4 - 121y^4$$

Factor problems 24-33

24.
$$x^2 - 5x - 36$$

25.
$$m^2 + m - 6$$

26.
$$3m^2 - 147n^2$$

27.
$$x^2 - 2x + 24$$

24.
$$x^2 - 5x - 36$$
 25. $m^2 + m - 6$ **26.** $3m^2 - 147n^2$ **27.** $x^2 - 2x + 24$ **28.** $42x^2 - 2x - 20$

29.
$$6x^{-3} - 4x^{-2} + 9x^2$$

30.
$$x^2 - 18x + 36$$

29.
$$6x^{-3} - 4x^{-2} + 9x^2$$
 30. $x^2 - 18x + 36$ **31.** $2y^2 + 6yz + 5y + 15z$ **32.** $xy + 3x - 4y - 12$ **33.** $m^2 - 10m + 16$

2 **33**.
$$m^2 - 10m + 16$$

34. Factor
$$x^2 - 4x^{-2} + x^{-1}$$

34. Factor
$$x^2 - 4x^{-2} + x^{-1}$$
 35. Factor $x^{1/2} - 4x^{-1/2} + x^{-1}$

Solve for x for problems 36-45

36.
$$x^2 - 7x - 8 = 0$$

37.
$$4x^2 = 32x$$

38.
$$x^2 + 2x = 8$$

36.
$$x^2 - 7x - 8 = 0$$
 37. $4x^2 = 32x$ **38.** $x^2 + 2x = 8$ **39.** $x^3 + x^2 - 6x = 0$ **40.** $-x^2 - x = -12$

40.
$$-x^2 - x = -12$$

41. Solve by factoring
$$(x+5)^2 - 5(x+5) - 36 = 6$$

41. Solve by factoring
$$(x+5)^2 - 5(x+5) - 36 = 0$$
 42. Solve by factoring $(x-3)^2 - 5(x-3) - 36 = 0$

43. Solve by factoring
$$(1/x)^2 - 5(1/x) - 36 = 0$$

41. Solve by factoring
$$(x+5) - 5(x+5) - 36 = 0$$
42. Solve by factoring $(x-3) - 5(x-3) - 36 = 0$
43. Solve by factoring $(1/x)^2 - 5(1/x) - 36 = 0$
44. Solve by factoring $(\sqrt{x-3})^2 - 5(\sqrt{x-3}) - 36 = 0$

45. Solve by factoring
$$x^4 - 5x^2 - 36 = 0$$

Answers

1	$x^{-16} = 1/x^{16}$	16	$b^7/2a^2$	31	(y+3z)(2y+5)
2	$-2t^{18}$	17	$-8r^2 + 10r + 33$	32	x y + 3x - 4y - 12
3	1/25	18	$49x^2 + 112xs + 64s^2$	33	(m-2)(m-8)
4	Undefined	19	$3m^2 + 29m + 18$	34	$x^{-2}(x^4-4+x^1)$
5	$1/y^{16}$	20	$9x^2 - 64y^2$	35	$x^{-1}(x^{3/2}-4x^{1/2}+1)$
6	10 <i>y</i>	21	$p^5 - 4p^4 + 4p^3 - 3p + 6$	36	x = -1, 8
7	-1/64	22	10	37	x = 0, 8
8	0	23	$(9x^2 - 11y^2)(9x^2 + 11y^2)$	38	x = -4,12
9	$-2y^2 + 9y + 17$	24	(x-9)(x+4)	39	x = -4,3
10	$1/k^{9}$	25	(m+3)(m-2)	40	x = -3, 0, 2
11	6/ba ³	26	3(m+7n)(m-7n)	41	$k^2 - 5k - 36 = 0, x = -9, 4$
12	3/10	27	Prime	42	$k^2 - 5k - 36 = 0, x = -1,12$
13	$-r^{9}/27$	28	2(3x+2)(7x-5)	43	$k^2 - 5k - 36 = 0$, $x = -1/4, 1/9$
14	y^6 / x^3	29	$x^{-3}(6-4x+9x^5)$	44	$k^2 - 5k - 36 = 0, x = 84$
15	m^{10} / n^{19}	30	Prime	45	$k^2 - 5k - 36 = 0$, $x = \pm 3, \pm 2i$

Abe Mirza

Quadratic Equations (QE)

Algebra

$$ax^2 + bx + c = 0$$

Everyone is ignorant, only on different subjects. - Will Rogers

Solving QE $ax^2 + bx + c = 0$ by,

1. Factoring ZFP,

$$(x+3)(x-5) = 0$$
, $(x+3) = 0$, $(x-5) = 0$
 $x = -3$, $x = 5$

2. The Square root method

$$(x-a)^2 = b,$$
 $\sqrt{(x-a)^2} = \pm \sqrt{b},$ $(x-a) = \pm \sqrt{b},$ $x = a \pm \sqrt{b}$
 $(x-5)^2 = 16,$ $\sqrt{(x-5)^2} = \pm \sqrt{16},$ $(x-5) = \pm 4,$ $x = 5 \pm 4,$ $x = 9,$ $x = 1$
 $(x+3)^2 = 13,$ $\sqrt{(x+3)^2} = \pm \sqrt{13},$ $(x+3) = -3 \pm \sqrt{13},$ $x = -3 \pm \sqrt{13},$

3. Quadratic Formula for $ax^2 + bx + c = 0$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$x^{2} - 6x - 7 = 0 a = 1, b = -6, c = -7$$

$$x = \frac{-(-6) \pm \sqrt{(-6)^{2} - 4(1)(-7)}}{2(1)} = \frac{6 \pm \sqrt{36 + 28}}{2} = \frac{6 \pm \sqrt{64}}{2} = \frac{6 \pm 8}{2}, x = \frac{14}{2} = 7, x = \frac{-2}{2} = -1$$

Practice Problems

A. Solve by factoring,
$$3x^2 - 6x = 0$$

$$x = 0$$
 , $x = 2$

B. Solve by factoring,
$$x^2 - 8x = -16$$

$$x = 4$$
 , $x = 4$

C. Solve by factoring,
$$3x^2 - x - 10 = 0$$

$$x = -5/3$$
, $x = 2$

D. Solve by square root method
$$3x^2 = 108$$

$$x = 6,$$
 $x = -6$

E. Solve by square root method
$$4x^2 = 25$$

$$x = 5/2,$$
 $x = -5/2$

F. Solve by square root method
$$(x-9)^2 = 36$$

$$x = 15,$$
 $x = 3$

G. Solve by square root method
$$(4x-3)^2 = 125$$

$$x = \frac{3 + 5\sqrt{5}}{4}, \qquad x = \frac{3 - 5\sqrt{5}}{4}$$

H. Solve by square root method
$$(2x+1)^2 = 48$$

$$x = \frac{-1 + 4\sqrt{3}}{2}$$
, $x = \frac{-1 - 4\sqrt{3}}{2}$

I. Solve by Quadratic Formula
$$x^2 - 10x + 16 = 0$$

$$x = 8,$$
 $x = 2$

J. Solve by Quadratic Formula
$$2x^2 + 36x = -34$$

$$x = -1,$$
 $x = -17$

K. Solve by Quadratic Formula
$$x^2 - 4x - 45 = 0$$

$$x = 9,$$
 $x = -5$

L. Solve by Quadratic Formula
$$3x^2 + x - 4 = 0$$

$$x = 1,$$
 $x = -4/3$

M. Solve by Quadratic Formula
$$x^2 + 5x + 3 = 0$$

$$x = \frac{-5 + \sqrt{13}}{2}, \qquad x = \frac{-5 - \sqrt{13}}{2}$$

Logarithms

Logarithms are different ways of writing exponential equations.

$$100 = 10^{2}$$

$$00 = 10^{2}$$

$$100 = 2$$

$$.0001 = 10^{-4}$$

$$128 = 2^7$$

$$\updownarrow$$

$$\frac{1}{125} = 5^{-3}$$

$$\updownarrow$$

$$log_{10}100 = 2$$
 $log_{10}.0001 = -4$

$$log_2 128 = 7$$

$$\log_5 \frac{1}{125} = -3$$

Rules:

Base b > 0, $b \ne 1$

	Rules	Name		Example	Practice
--	-------	------	--	---------	----------

1		$log_b 1 = 0$	$log_8 1 = 0$	log ₁₀ 1=?
2		$log_b b = 1$	$log_{10}10=1$, $Log_{28}28=1$	log ₂ 2 = ?
3	Power	$\log_b a^n = n \log_b a$	$\log_{10} 8^3 = 3\log_{10} 8$	$log_5 2^6 = ?$
4	Power	$\log_{b^m} a^n = -\frac{n}{m} \log_b a$	$log_8 128 = log_{2^3} 2^7 = \frac{7}{3} log_2 2 = \frac{7}{3} (1)$	log ₂₇ 243 = ?
5	Product	$\log_b a + \log_b c = \log_b ac$	$\log_{10}7 + \log_{10}9 = \log_{10}63$	$\log_5 20 + \log_5 5 = ?$
6	Quotient	$\log_b a - \log_b c = \log_b \frac{a}{c}$	$log_{10}12 - log_{10}3 = log_{10}4$	$log_5 20 - log_5 5 = ?$
7		$b^{\log_b a} = a$	$5^{\log_5 8} = 8$	$3^{\log_3 11} = ?$
8	Base 10	When base is 10, we write base as blank.	$log_{10}81 = log81, log_{10}x^2 = 2log x$	$log_{10} 20 = ?, log_{10} yz = ?$
10	Natural Base (e)	When base is (e), we write ln rather log .	$log_e x = \ln x$, $log_e 2 = \ln 2$, $\ln e = 1$	

Write each as an exponential.

1)
$$log_{2}32 = 5$$

2)
$$\log_{a} x = -2$$

1)
$$log_2 32 = 5$$
 2) $log_e x = -2$ 3) $log_{11} \sqrt{11} = \frac{1}{2}$ 4) $log_{10} 1000 = 3$ 5) $log_{10}.001 = -3$

4)
$$log_{10}1000 = 3$$

5)
$$log_{10}.001 = -3$$

Write each as a logarithmic equation.

6)
$$10000 = 10^4$$

7)
$$10^{-2} = \frac{1}{100}$$
 8) $5^{\frac{1}{2}} = \sqrt{5}$

8)
$$5^{\frac{1}{2}} = \sqrt{5}$$

Simplify each problem,

9.
$$\log_{25} 125 =$$

10.
$$\log_{\frac{1}{2}} 64 =$$

9.
$$\log_{25} 125 =$$
 10. $\log_{\frac{1}{2}} 64 =$ 11. $\log_{\sqrt{5}} \frac{1}{5} =$ 12. $\log_{10} .00001 =$ 13. $\log_{0.10} 1000 =$

13.
$$log_{\theta.1\theta}$$
 1000 =

Solve for x,

15.
$$\log_x 27 = 2$$

16.
$$\log_3 x = -2$$

17.
$$\log_2(x+6) = 3$$

18.
$$\log_6(x^2 - x) = 1$$

Use a calculator to find

19
$$\log_4 27 =$$

22.
$$\log_{56} 5060 =$$

1	2	3	4	5	6	7	8
$32 = 2^5$	$x = e^2$	$\sqrt{11} = 11^{\frac{1}{2}}$	$1000 = 10^3$	$.001 = 10^{-3}$	$log_{10}10000 = 4$	$log_{10} \frac{1}{100} = -2$	$\log_5 \sqrt{5} = \frac{1}{2}$
9	10	11	12	13	14	15	16
3/2	-12	-2	-5	-3	-3/2	$\sqrt{27}$	-1/9
17	18	19	20	21	22		
	-2,3						