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Abstract 

Bone and the immune system are both complex tissues that respectively 
regulate the skeleton and the body’s response to invading pathogens. It has 
now become clear that these organ systems often interact in their function. 
This is particularly true for the development of immune cells in the bone 
marrow and for the function of bone cells in health and disease. Because 
these two disciplines developed independently, investigators in each don’t 
always fully appreciate the significance that the other system has on the 
function of the tissue they are studying. This review is meant to provide a 
broad overview of the many ways that bone and immune cells interact so 
that a better understanding of the role that each plays in the development 
and function of the other can develop. It is hoped that an appreciation of the 
interactions of these two organ systems will lead to better therapeutics for 
diseases that affect either or both. 
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I. Introduction 

BONE IS A COMPLEX organ with multiple functions. It provides structural 
integrity for the body, it is the site of hematopoiesis, and it is a storehouse for 
calcium and phosphorus (1). Likewise, the immune system is complex and 
provides organisms with protection from invading pathogens (2). Multiple 
overlapping and interacting mechanisms have evolved to regulate both 
systems. Interactions between bone and immune cells are now well 
described. It has become apparent that to explain the phenotype of many in 
vivo models with abnormal bone metabolism, one can no longer view either 
system in isolation. Rather, to understand their function, they must be viewed 
as a single integrated system. Examples of recently identified interactions of 
bone and immune cells include the findings: 1) that cells related to 
osteoblasts, which form bone, are critical regulators of the hematopoietic 
stem cell (HSC) niche from which all blood and immune cells derive; and 2) 
that osteoclasts, which are the cells that resorb bone, appear to share a 
common origin with the myeloid precursor cells that also gives rise to 
macrophages and myeloid dendritic cells. It has also been shown in vitro that 
cells that are relatively far along in their differentiation toward antigen-
presenting dendritic cells retain the ability to form mature bone-resorbing 
osteoclasts (3). Finally, over the last 30 yr, it has become well established 
that multiple soluble mediators of immune cell function including cytokines, 
chemokines, and growth factors also regulate osteoblast and osteoclast 
activity (4). It is likely that immune cells and cytokines are critically 
responsible for the changes in bone turnover and bone mass that occur in 
postmenopausal osteoporosis and inflammatory conditions such as 
rheumatoid arthritis, periodontal disease, or inflammatory bowel disease. 
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The regulation of bone by hematopoietic and immune cells serves a variety 
of functions. It is likely that developing hematopoietic cells regulate bone 
turnover and maintain the marrow cavity by interacting with osteoblasts and 
osteoclasts during normal bone development (5). Conversely, during 
inflammatory states either locally produced or circulating cytokines, which 
are the products of activated immune cells, mediate increased bone turnover 
and the bone pathology in diseases such as rheumatoid arthritis and 
inflammatory bowel disease. We are only beginning to understand the 
breadth of bone and immune cell interactions, and this review is by no 
means complete. However, by appreciating the interactions of these two 
systems, it is hoped that future research into this area will develop in the 
context of the synergies between them so that the mechanisms underlying 
bone and immune cell function in both health and disease can be better 
understood. 

II. The Origins of Bone Cells 

A. Osteoclasts 

Osteoclasts are multinucleated giant cells that form from the fusion of 
mononuclear precursor cells. Mature osteoclasts are unique in their capacity 
to efficiently resorb bone and contain a variety of specific cell structures that 
facilitate this process (1). The origin of the osteoclast precursor cell has been 
well studied. Initial work demonstrated that osteoclasts share many 
characteristics with macrophages (6). Although, osteoclasts and 
macrophages appear to express some common antigens (7), there are also 
clear differences in the expression of surface antigens that separate these 
two cell types (8,9). Mononuclear cells, which can differentiate into 
osteoclast-like cells (OCL) in a variety of in vitro culture systems, are present 
in the bone marrow and the peripheral blood (10,11). 

The availability of multiple antibodies recognizing cell surface molecules, 
which are expressed on hematopoietic cells (12,13,14,15), has allowed the 
identification of bone marrow peripheral blood and spleen cell populations 
that can form OCL in vitro. Studies from multiple laboratories have identified 
several candidate populations with the ability to form OCL in coculture with 
stromal cells, when cultured alone in liquid medium or when cultured in 
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methylcellulose. In experiments performed before the identification of 
receptor activator of nuclear factor (NF)-κB ligand (RANKL), which is the 
critical cytokine that regulates osteoclast formation (16), investigators relied 
on coculture of various fractions of cells (generally from bone marrow) with 
stromal or osteoblastic cells (17). In these assays, cells were stimulated to 
induce osteoclastogenesis by treatment with a stimulator of resorption like 
1,25 OH2 vitamin D3 or PTH. Interestingly, these assays require cell-cell 
interaction between osteoblastic and osteoclastic cells because OCL did not 
form in these cultures if the two cell types were separated by a membrane 
(18). The majority of these early studies focused on myeloid lineage cells. 
They demonstrated that rodent cells expressing mature macrophage 
markers, which were isolated from the bone marrow or spleen, gave rise to 
OCL when they were cocultured with bone marrow stromal cells (BMSC) 
(19). Muguruma and Lee (20) identified an osteoclast progenitor population 
in murine bone marrow that was negative for mature markers of B 
lymphocytes (CD45R/B220), granulocytes (Gr-1), macrophages 
(CD11b/Mac-1), and erythroid cells (Ter-119). This population did not 
express Sca-1, which is a marker that is found on HSC but was positive for 
the progenitor marker CD117/c-kit (20). These cells could progress to 
tartrate-resistant acid phosphatase-expressing mononuclear cells when they 
were cultured in semisolid media and OCL when they were cultured with 
1,25 OH2 vitamin D3-treated-ST2 stromal cells. However, the cells in this 
fraction were considered multipotential because they were also able to 
differentiate into granulocytes, macrophages, and erythroid cells. 
Interestingly, when the c-kit low population was separated, it also could 
generate osteoclasts, but in a more restricted fashion. Tsurukai et al. (9) 
isolated cells from coculture of murine bone marrow hematopoietic cells and 
osteoblastic cells by passage through a Sephadex column and found that the 
population that was enriched for osteoclast precursors expressed monocytic 
markers but not markers of B or T lymphocytes. Using a coculture assay with 
ST2 cells, Hayashi et al. (21) found that osteoclast precursors were in the c-
kit-positive (+) fraction and that expression of c-fms, the macrophage colony-
stimulating factor (M-CSF) receptor, inhibited the efficiency of c-kit-positive 
cells forming OCL in culture. 

Arai et al. (22) used both coculture with ST2 stromal cells and direct 
stimulation with RANKL and M-CSF, as well as antibodies against c-fms and 
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the monocytic marker CD11b/Mac-1, to demonstrate that murine bone 
marrow cell populations expressing c-kit formed OCL in culture. These 
authors concluded that a population of murine bone marrow cells with the 
phenotype c-kit+, c-fms+ CD11blo contained a multipotential progenitor cell 
population that gave rise to osteoclasts with high frequency. This population 
did not express RANK (the receptor for RANKL) when it was isolated from 
bone marrow but did after it was cultured with M-CSF. Interestingly, these 
precursors were not completely restricted to osteoclastogenesis because in 
methylcellulose cultures they generated macrophages and mononuclear 
tartrate-resistant acid phosphatase-positive cells. Microglia, the specialized 
phagocytic cells in the central nervous system, also appear to arise from a 
precursor cell that can give rise to osteoclasts (23). We have found that the 
osteoclast precursor cells in murine bone marrow are negative for CD3 and 
CD45R, negative or low for CD11b, and positive for expression of c-fms (24). 
Expression of c-kit further separated this population of murine bone marrow 
into two populations: 1) cells that rapidly formed OCL in vitro when cultured 
with M-CSF and RANKL (c-kit high cells); and 2) cells that formed OCL more 
slowly in vitro (c-kit low to negative cells). Expression of CD11b in this 
population of osteoclast precursors occurred transiently during in vitro 
culture. Initially, we found the population that most efficiently formed 
osteoclasts to be negative to low for this antigen. However, culture with M-
CSF and RANKL induced mononuclear osteoclast precursor cells to 
transiently express high levels of CD11b. Expression of this antigen was lost 
in multinucleated cells (24). 

The relationship of osteoclasts to dendritic cells, which present antigen to T 
lymphocytes as part of the adaptive immune response (25), is now also 
established. Both human and murine cells, expressing early markers of the 
myeloid dendritic cell lineage, can differentiate into osteoclasts in vitro 
(23,26,27). In addition, it appears that dendritic cells, which are relatively late 
in their lineage development, retain the ability to form osteoclasts in vitro. 
Alnaeeli et al. (3) showed that murine bone marrow cells, which were treated 
in vitro with cytokines so that they could present antigen to T lymphocytes, 
formed OCL in culture when they were treated with M-CSF and RANKL. 
However, Speziani et al. (28) found that neither mature myeloid dendritic 
cells generated in vitro nor plasmacytoid dendritic cells generated in vivo 
formed OCL in culture. 
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The ability of a common progenitor cell to differentiate into macrophages, 
osteoclasts, and myeloid dendritic cells has been proposed for some time 
(26,27). However, only recently has it been demonstrated that a myeloid 
murine bone marrow cell can be isolated to the purity of single cell clones 
and retain the capacity to differentiate into macrophages and dendritic cells 
(29). We now have good evidence that this macrophage/myeloid dendritic 
cell precursor (29) can also differentiate into an OCL in vitro (J. Lorenzo, 
unpublished data). Hence, it appears that a common precursor cell exists for 
macrophages, myeloid dendritic cells, and osteoclasts. Commitment of the 
common macrophage/myeloid dendritic cell/osteoclast precursor to the 
osteoclast lineage occurs relatively quickly (within 24 h) after treatment of 
these cells with RANKL (30). 

Expression of the myeloid-specific antigen CD11b has been used by a 
number of investigators to identify a circulating osteoclast precursor cell 
(31,32,33,34). The number of these cells in the circulation is regulated by the 
inflammatory state of the organism and in particular by TNFα. Most recently, 
Yao et al. (34) demonstrated that expression of CD11b and Gr-1 could be 
used to identify this circulating osteoclast precursor population. In humans, 
expression of CD14 and the lack of expression of CD16 have been used to 
identify osteoclast precursor cells in peripheral blood (35,36). In addition to 
CD14, osteoclast precursors in human peripheral blood also express 
receptor activator of NF-κB (RANK) (37). Migration and adhesion of human 
CD14-positive monocytes to sites of inflammation from the peripheral 
circulation may be mediated through activation of microvascular endothelial 
cells by proinflammatory cytokines (38) 

One interesting aspect of osteoclastogenesis is that cells with a cell surface 
phenotype that is similar to that of osteoclast precursor cells in bone marrow 
can be identified in the spleen. However, osteoclastogenesis does not occur 
in the spleen under any known condition. One possible explanation for this 
paradox is that the population of cells found in the spleen, despite having a 
similar phenotype to cells found in the bone marrow, are missing crucial 
elements that prevent their forming osteoclasts in splenic tissues. However, 
this hypothesis seems improbable because multiple investigators have 
established the in vitro osteoclastogenic potential of splenocytes. Another 
possibility is that the microenvironment in the spleen does not allow the 
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production of osteoclasts either because it lacks critical signaling molecules 
or because it produces inhibitory signals. Miyamoto et al. (39) proposed that 
to complete osteoclastogenesis an adherent condition, which is defined by 
the expression of specific molecules, is required. This would ensure the 
correct interactions between osteoclast progenitors and supporting cells that 
express the correspondent ligands. Osteoblast lineage cells in the bone 
marrow might produce these signals, whereas the spleen or other nonbone 
tissues would not. 

The latter hypothesis is supported by the recent findings that late osteoclast 
differentiation and activation require a novel combination of costimulatory 
molecules, which act in concert with M-CSF and RANKL to complete 
osteoclastogenesis (40). These molecules involve proteins containing an 
immunoreceptor tyrosine-based activation motif (ITAM) domain. They are 
found in adapter molecules like DAP12 and the Fc receptor γ (FcRγ). The 
search for receptors associated with these ITAM adapters in myeloid cells 
has identified at least two candidates that associate with FcRγ [osteoclast-
associated receptor (OSCAR) and paired Ig-like receptor A (PIR-A)] and two 
that associate to DAP12 [the triggering receptor expressed by myeloid cells-
2 (TREM-2) and the signal regulatory protein β1 (SIRP β1)] (41). The ligands 
for these receptors are currently unknown. 

Fusion of osteoclast precursor cells into mature resorbing osteoclasts is a 
regulated process (42). Recently, expression of CD200 and CD200R on 
osteoclasts was found to influence this fusion process because osteoclast 
number was decreased and bone mass was increased in CD200-deficient 
mice (43). CD200-deficient mice also had a normal number of osteoclast 
precursor cells but a decreased rate of osteoclastogenesis in vitro. 

Although the myeloid origin of osteoclasts is well established, it has been 
proposed that cells of the B-lymphoid lineage can also give rise to osteoclast 
progenitors. Several groups have suggested the existence of bipotential 
progenitors for B lymphocytes and macrophages in bone marrow, which 
have the ability to differentiate into osteoclasts (44,45,46). We have found 
that paired box (Pax) 5 −/− mice, which have a block in B lymphocyte 
development at the pro-B cell stage, have an increased number of 
osteoclasts in their bones and decreased bone mass (47). However, the 
osteoclast precursor cell population in Pax5 −/− mice is myeloid in origin. In 
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previous work (48), we found that OCL formed in cultures of murine bone 
marrow cells that express the B lymphocyte marker CD45R. These studies 
relied on populations of CD45R-positive murine bone marrow cells that were 
separated by fluorescence-activated cell sorting to a purity of 98–99%. 
However, in more recent work (24), we found that purification of the CD45R-
positive murine bone marrow population by a second round of fluorescence-
activated cell sorting to a purity more than 99.9% essentially eliminated the 
ability of purified CD45R population to form OCL in vitro. Hence, it appears 
that the OCL, which form in cultures of CD45R-positive cells, require the 
presence of a contaminating non-CD45R-expressing population of cells to 
form OCL. We are aware of no other studies of the osteoclastic potential of 
CD45R-expressing murine bone marrow cells that purified their populations 
to the degree that we have now done. However, we suspect that additional 
rounds of purification of other CD45R-positive populations, which have been 
proposed to contain osteoclast precursors, will likely also demonstrate them 
to be contaminated with small amounts of non-CD45R-expressing osteoclast 
precursors. We believe that these contaminating cells are critical for OCL 
formation in these cultures and may represent osteoclast precursor cells with 
a high proliferative capacity. 

In humans it was recently demonstrated that the nuclei of myeloma cells, 
which are malignant cells of B lymphocyte origin, can be identified in 
osteoclasts. It was further proposed that this may be a mechanism for the 
increased osteoclastic activity seen in this condition (49). However, it has not 
been demonstrated that nonmalignant B lymphocyte lineage cells integrate 
into osteoclasts in vivo in humans. 

B. Osteoblasts 

Osteoblasts are derived from a mesenchymal progenitor cell that is 
multipotential and also can differentiate into marrow stromal cells and 
adipocytes (50). The signals that regulate the decision of mesenchymal 
progenitor cells to form osteoblasts are incompletely understood. However, a 
number of critical paracrine signals and cell autonomous transcription factors 
have been identified. These include the transcription factors Runx2 and 
osterix, which when absent prevent osteoblast formation, and the bone 
morphogenic protein (BMP) family (51,52,53), which initiates the signals for 
osteoblast differentiation. Most recently, it was found that Wnt signaling 
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pathways are involved in the decision of the mesenchymal progenitor cell to 
become either an adipocyte or an osteoblast (54,55,56,57,58). 

As matrix calcifies under the influence of the osteoblast-produced enzyme, 
bone-specific alkaline phosphatase, a portion of the osteoblasts are 
entrapped in the calcified matrix and persist in bone as unique cells called 
osteocytes. These cells are believed to sense mechanical force on bone and 
to send signals, which regulate bone turnover, to cells at the bone surface. 
Osteocytes interconnect with each other and the cells at the bone surface via 
cellular projections, which are termed dendritic processes. These reside in 
channels in the mineralized bone, named canaliculi (59,60). Most recently 
much interest has been generated by the discovery that the relatively 
osteocyte-specific protein sclerostin is an important regulator of the Wnt 
signaling pathway in osteoblast lineage cells (61). 

III. Role of Osteoblasts in Hematopoiesis 

In mammals during the early stages of gestation, hematopoiesis takes place 
in the yolk sac and then in the fetal liver. Eventually, it migrates to the bone 
marrow where, unless disturbed, it remains throughout the rest of life. 
Several investigators have documented the close proximity and/or 
attachment of hematopoietic cells to bone matrix and/or bone cells. These 
studies showed that multipotential HSC in the bone marrow were located 
adjacent to the endosteal surfaces of bone. They also demonstrated that 
cells closest to the bone surface were more proliferative than those that were 
farther away from the endosteum (62,63,64,65,66,67). Electron micrographs 
from Deldar et al. (68) found that granulocytes and reticular cells were either 
in close juxtaposition or in contact with endosteal bone-lining cells. There is a 
relatively high frequency of pre-B and terminal deoxynucleotidyl transferase-
positive (TdT+) cells near the endosteal bone surface, and this frequency 
declines in cells that are closer to the center of the bone marrow cavity (69). 
HSC differentiation was also demonstrated to occur in close proximity to 
endosteal osteoblasts (70). Cheng et al. (71) observed, when isolating 
BMSC (a source of osteoblast progenitors) from bone marrow, that 
complexes existed, which were composed of BMSC and megakaryocytes 
(MK). This result implied that there was a physical association between 
mesenchymal and hematopoietic cells. It was also found that long-term HSC 
were attached to spindle-shaped osteoblast-like cells on bone surfaces, 
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which expressed N-cadherin but not CD45 (72). However, this result is 
controversial because other investigators do not find HSC to express N-
cadherin (73). These authors also demonstrated that the majority of HSC 
associate with sinusoidal vessels in the bone marrow and that only a minority 
of HSC are in close proximity to endosteal cells (73). Other authors have 
found that interaction of the chemokine CXCL12 on support cells with its 
receptor CXCR4 on HSC is critical for maintenance of HSC in the bone 
marrow (74). Expression of CXCL12 on support cells is found on cells in both 
the vasculature and the endosteum (75). The interactions of support and 
hematopoietic cells lead to the concept of the hematopoietic niche, which is 
a specialized structure that supports HSC and facilitates their replication and 
differentiation (Fig. 1 ). 

It is clear that even the use of the most vigorous methods to expel bone 
marrow from mouse long bones leaves many cells adherent to endosteal 
surfaces. In the hematopoietic literature, these cells are often referred to as 
osteoblasts. Although this population predominantly contains cells of the 
osteoblast lineage, adherent cells of hematopoietic origin, such as 
osteoclasts and macrophages, are also present. It is also possible that bone-
lining cells support HSC in the niche. Bone-lining cells are members of the 
osteoblast lineage and are thought to be mature cells that are different from 
osteocytes. Both bone-lining cells and osteocytes are believed to be more 
mature than matrix-producing osteoblasts. It has been recently demonstrated 
that osteoclasts are important for the release of hematopoietic progenitors 
from the niche (76). Mice injected with lipopolysaccharide (LPS) have 
increased numbers of osteoclasts on the endosteum and increased numbers 
of hematopoietic colony-forming cells in the peripheral blood, as a result of a 
marked mobilization of HSC from the bone marrow (76). Mice treated with 
RANKL also had an increased number of osteoclasts on their bone surfaces 
and increased levels of circulating colony-forming progenitors including Lin-
Sca-1+c-kit+ progenitor cells (76). Conversely, mice treated with calcitonin, 
an inhibitor of osteoclast formation, or mice with defective osteoclasts had a 

Figure 1 
Scheme for the interactions of osteoblasts with hematopoiesis. HSCs reside in 
the bone marrow adjacent to either osteoblast lineage cells or sinusoids. Both 
of these likely produce signals that control HSC replication and differentiation. 
HSC can remain (more ...) 

�
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reduced number of circulating progenitors (76). 

Primary osteoblast lineage cells, which are established from humans and/or 
mice, have been shown to synthesize granulocyte colony-stimulating factor 
(G-CSF), granulocyte M-CSF (GM-CSF), M-CSF, IL-1, IL-6, lymphotoxin, 
TGFβ, TNFα, leukemia inhibitory factor (LIF), and stem cell factor (SCF) or c-
kit ligand (77,78,79,80,81,82,83,84,85,86,87,88,89). Importantly, all of these 
cytokines have been demonstrated to play a role in hematopoiesis (90,91) 
and many are also involved in osteoclast development. 

One of the first definitive findings regarding the role for osteoblast lineage 
cells in hematopoiesis was the demonstration that when CD34+ 
hematopoietic progenitors were cultured on a monolayer of osteoblast 
lineage cells for 2 wk, there was an 8-fold increase in hematopoietic cell 
number (89). It was then demonstrated that human osteoblast lineage cells 
constitutively produce membrane-bound G-CSF and that osteoblast lineage 
cell-bound G-CSF was responsible for approximately 55% of the increase in 
hematopoietic cell number (89). Assessment of the morphology of 
hematopoietic progenitors, which were cultured with osteoblast lineage cells, 
showed that the osteoblast lineage cells were able to support the survival of 
immature hematopoietic cells such as the long-term culture-initiating cells 
(92). In addition, osteoblast lineage cells were able to support the survival 
and, to a smaller extent, the proliferation of early myeloid progenitors (89). 
Interestingly, the coculture of CD34+ bone marrow cells with osteoblast 
lineage cells did not alter the secretion of G-CSF, GM-CSF, or TGFβ-1 by 
the osteoblast lineage cells (93). However, the coculture of CD34+ bone 
marrow cells with osteoblast lineage cells minimally elevated LIF secretion 
and markedly elevated osteoblast lineage cell IL-6 production (93). Although 
the exact mechanism(s) responsible for the increase in osteoblast lineage 
cell-synthesized IL-6 remains to be determined, it appears to be regulated by 
unknown factor(s), which are secreted by CD34+ cells. Two likely 
candidates, IL-1β and TNFα, were found not to be responsible (93). 
Transgenic mice with a constitutively active PTH/PTHrP receptor, whose 
expression is restricted to osteoblast lineage cells, had increased trabeculae 
and trabecular osteoblasts (94). Bone marrow from these transgenic mice 
had an increased number of Lin-Sca-1+cKit+ HSC compared with controls 
(94). The increase in HSC was due to the increased ability of the stromal 
cells from the transgenic mice to support HSC growth and differentiation. 
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Injection of wild-type mice with PTH also produced an increase in these HSC 
(94). These data support the idea that cells of the osteoblast lineage are 
important regulators of the bone marrow hematopoietic niche. 

Recently, significant insights have been generated concerning the molecular 
mechanisms regulating osteoblast lineage cell-hematopoietic cell 
interactions (72,94,95). Long term HSC were shown to be adjacent to 
osteoblast-lineage cells, and their number was increased by approximately 
2.3-fold in mice upon deletion of the bone morphogenetic protein receptor 
1A. Significantly, bone morphogenetic protein receptor 1A-deficient mice 
also had a similar increase in osteoblast-lineage cell number (72). Similarly, 
it was demonstrated that expansion of the osteoblast-lineage cell population 
in bone by stimulation of the PTH/PTHrP receptor increased the number of 
HSC in bone marrow (94). This effect appeared to be mediated by Jagged-1-
Notch-1 signaling because Jagged-1 levels were increased in mice with 
osteoblast-targeted activation of the PTH/PTHrP receptor. In addition, the 
increase in the number of HSC in cultures of cells from transgenic mice with 
osteoblast-lineage cell-targeted activation of the PTH/PTHrP receptor was 
abrogated by inhibitors of Notch signaling. It has also been shown that PTH 
directly stimulates production of Jagged-1 by osteoblast-lineage cells (96). In 
a converse experiment, it was found that targeted destruction of osteoblast-
lineage cells in mice led to a decrease in HSC in bone marrow (95). 
Interactions of HSC and osteoblast lineage cells appear to be mediated by 
interactions of Tie2 on HSC and angiopoietin-1 on osteoblast lineage cells. 
This signaling system appears to inhibit cell division in HSC, while 
maintaining their capacity for self-renewal (97,98). 

Annexin II also appears to be involved in osteoblast-lineage cell-HSC 
interaction (99). Osteoblasts express this protein, which appears to mediate 
HSC adhesion, and HSC number in the marrow of annexin II-deficient mice 
was significantly reduced. Production of IL-10 by osteoblasts has also been 
shown recently to promote the self-renewal of HSC in the bone marrow (100). 

Erythropoietin-producing hepatocyte kinases (Ephs) are small receptor 
tyrosine kinases that function to regulate a variety of cellular systems 
including immune and bone cells (101,102). The Eph family has 15 members 
and is separated into Eph A and Eph B subgroups. The ligands of Ephs are 
called ephrins. Both Ephs and ephrins are cell surface molecules, and both 

Page 13 of 105Osteoimmunology: Interactions of the Bone and Immune System

3/17/2010http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2528852/?tool=pmcentrez



mediate cellular responses. In bone, ephrinB and EphB receptors control 
skeletal patterning in the developing organism (103). Mice lacking ephrinB1 
have defects in rib, joint, and digit development (104). It is now known that 
osteoclasts express ephrinB2, whereas osteoblasts express EphB receptors, 
particularly EphB4 (105). Zhao et al. (105) demonstrated that activation of 
ephrinB2 in osteoclasts by EphB4 on osteoblasts had bidirectional effects, 
which resulted in inhibition of osteoclastogenesis and increased osteoblast 
differentiation. Inhibition of osteoclastogenesis by ephrinB2 signaling was 
mediated by decreases in Fos and NFATc1, whereas enhanced osteoblast 
differentiation required RhoA inactivation. 

IV. Role of Osteoblasts in Bone Marrow Cell 
Transplantation 

Cells of the osteoblast lineage facilitate bone marrow transplantation. 
Specifically, it has been shown that transplantation of donor bone (containing 
BMSC and/or osteoblast lineage cells) or osteoblast lineage cells isolated 
from mouse long bones, along with HSC or bone marrow cells, promoted 
hematopoietic engraftment (106,107,108). Indeed, this combination allowed 
for successful transplantation where HSC or bone marrow cells alone failed 
(106,107). As another example, a transgenic mouse model was studied. This 
mouse expressed the herpes virus thymidine kinase gene under the control 
of the rat collagen α1 type I promoter. The transgene conferred lineage-
specific expression of thymidine kinase in developing and mature osteoblast 
lineage cells and allowed for the conditional ablation of these cells after 
treatment of the transgenic mice with ganciclovir (GCV) (95). After GCV 
treatment, these mice had marked changes in bone formation leading to a 
progressive bone loss. Importantly, treated animals also lost lymphoid, 
erythroid, and myeloid progenitors in the bone marrow, followed by 
decreases in the number of HSC. After withdrawal of GCV, osteoblasts 
reappeared in the bone, and medullary hematopoiesis was reestablished. 
Because PTH is able to regulate HSC number in vivo, PTH has therapeutic 
potential to enhance bone marrow transplantation. Pharmacological use of 
PTH increased the number of HSC that were mobilized into the peripheral 
blood, protected stem cells from repeated exposure to cytotoxic 
chemotherapy, and expanded stem cells in transplant recipients (36,109). 

V. B Lymphocyte Differentiation 
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B lymphopoiesis is a highly ordered process proceeding from progenitor cells 
in the fetal liver to development in the bone marrow and to mature B cells in 
the secondary lymphoid organs. The mature B cell terminally differentiates 
into Ig-secreting plasma cells after activation (110). B cell development is 
organized around the assembly of a functional B cell receptor through a 
process of gene rearrangement called V(D)J recombination (111). The bone 
marrow B cell developmental pathway can be divided into several distinct 
stages, based on the recombination status of the immunoglobulin genes and 
the expression of surface antigens (112,113,114). The earliest characterized 
committed B cell progenitor (pre-pro-B) expresses the cell surface markers 
CD45R and AAr.1 and has its Ig heavy (IgH) chain locus in the germ-line 
configuration (not rearranged) (42,115). Subsequent differentiation 
generates pro-B cells that harbor rearranged IgH D and J genes and express 
the surrogate light chains λ5 and VpreB and signaling adapters Igβ and Igα 
(116,117). As the cells mature, rearrangements occur initially in V gene 
segments of the IgH chain gene and then in the Ig light chain genes, a 
process that culminates in a functional surface antigen receptor (111,118). 
The molecular dissection of the B cell differentiation pathway has been 
greatly facilitated by the identification of transcription factors, which are 
critical for this process. These include PU.1, Ikarous, E2A, Ebf-1, and Pax5, 
which are required for developmental transitions during B lymphopoiesis. 
Loss of these specific factors precludes the cells from continued maturation 
and results in a developmental block of cells at the latest stage of 
differentiation before the arrest. 

Three transcription factors (PU.1, Ebf-1, and Pax5), which act early in B cell 
differentiation, surprisingly also have profound effects on bone cell 
development. Because these proteins function in close temporal sequence 
during B cell development, it might be expected that loss of their function 
would result in similar bone phenotypes. However, with the exception of 
being runted and lacking B cells, deletion of these transcription factors in 
mice produces animals with strikingly different bone phenotypes. 

A. PU.1 

PU.1, a member of the ETS domain transcription factors, regulates the 
proliferation and differentiation of B cell and macrophage lineage progenitors 
(119,120). The commitment of early progenitors to the B cell lineage 
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depends on a low level/activity of PU.1 in cells. In contrast, macrophage 
(osteoclasts) lineage commitment depends on high level/activity of PU.1 
(121). PU.1-deficient (−/−) mice have no B cells and fail to develop either 
osteoclasts or macrophages (120). This observation was one of the first to 
definitively show that osteoclasts are members of the macrophage lineage. 
PU.1 regulates the lineage fate of these progenitors by directly controlling 
expression of the IL-7 receptor and c-fms genes (122,123). 

B. Early B cell factor (Ebf) 

Ebf-1 is the founding member of a small multigene family of helix-loop-helix 
proteins that are evolutionarily conserved and have defined roles in cellular 
differentiation and function. This factor was cloned both from 
Saccharomyces cerevisiae in experiments aimed at identifying the olfactory-
restricted olfactory marker protein-1 promoter (124) and by biochemical 
purification of a factor interacting with the B lymphocyte restricted mb-1 
promoter (125). It was named Olf-1, or early B cell factor (Ebf), which in turn 
led to its current designation as O/E-1. Mice express at least three additional 
members of this family, Ebf-2 (mMot1/O/E-3), Ebf-3 (O/E-2), and Ebf-4 
(126,127,128). Isolation of the Ebf homolog Collier from Drosophila 
demonstrated the existence of a new family of evolutionarily conserved 
proteins Collier/Olf/EBF. Mouse Ebf-1, -2, -3, and -4 bind DNA as homo- or 
heterodimers (129). Ebf1 gene expression is required for B cell fate 
specification, whereas Pax5, which is regulated by Ebf1, is required for the 
differentiation of B lymphocyte lineage cells (130,131). Mice deficient in 
either of these transcription factors have arrested B cell differentiation at very 
early stages of B lymphopoiesis (Hardy A and B) (130). 

Ebf proteins are involved in both embryonic and adult development of the 
nervous system. Ebf-1 and -3 expression is seen in Purkinje cells and the 
cerebellum, and all four Ebf proteins are expressed at high levels in olfactory 
epithelium (132). Interestingly, OAZ is an Ebf-interacting protein involved in 
BMP signaling (110). OAZ interacts with Smad1 where Smads and O/E 
proteins compete for OAZ. Thus, it may be that Ebf proteins regulate BMP 
signaling. Additional support for this idea comes from the observation that 
Ebf-1 potentates activation of the B cell-specific gene mb-1 (CD79a) by Pax5 
(133). Importantly, Runx1 and Ebf-1 synergized to activate mb-1. This may 
be important because Runx1, a runt homology domain transcription factor, 
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which is required for hematopoiesis during embryonic development, is 
expressed in cartilaginous anlagen in the embryo, resting zone 
chondrocytes, and suture lines of the calvaria (134). Runx1 continues to be 
expressed in these tissues in adult mice, but not in mature cartilage or 
mineralized bone. Our preliminary data confirm the original report that Ebf-1-
deficient (−/−) mice are growth retarded (130). This is most likely due to the 
skeletal phenotype, which appears to result from a cell autonomous role of 
Ebf-1 on osteoblasts. Ebf-1, like all of the known Ebf genes, is highly 
expressed in adipocytes (130,135). Analysis of the preadipocyte cell lines, 
3T3 L1, indicates that these genes are expressed strongly in undifferentiated 
cells and their expression increases with differentiation (135). 
Overexpression of Ebf-1 enhances terminal adipocyte differentiation in 
preadipocyte cell lines and induces adipogenesis in multipotential cells. The 
fact that Ebf genes are expressed throughout adipocyte differentiation raises 
the possibility that they are key regulators of the pathway. However, the 
exact mechanism by which Ebf-1 stimulates adipogenesis in vitro or in vivo 
remains to be elucidated. Ebf1 mRNA is expressed in osteoblasts at all 
stages of differentiation and also in adipocytes (136). Tibiae and femora from 
Ebf-1−/− mice had a striking increase in all bone formation parameters 
examined, including the number of osteoblasts, osteoid volume, and bone 
formation rate (136). Serum osteocalcin, a marker of bone formation, was 
significantly elevated in mutant mice. The number of osteoclasts in bone 
were normal in younger (4 wk old) Ebf1−/− mice but increased in older (12 
wk old) Ebf1−/− mice. This correlated well with in vitro osteoclast 
development from bone marrow cells. In addition to increased 
osteoblastogenesis, Ebf1−/− mice had a dramatic increase in adipocyte 
number in the bone marrow. Increased adiposity was also seen histologically 
in the liver but not in the spleen of these mice (136). Thus Ebf1−/− mice 
appear to be a new model of lipodystrophy. EBF1 is a rare example of a 
transcription factor that regulates both the osteoblast and adipocyte lineages 
similarly. 

It is possible that the loss of B cells could account for the changes in bone 
that are seen in these mutants. However, this seems unlikely because RAG-
1- or μMT-heavy chain-deficient mice, which also lack most B cells, do not 
have a similar bone phenotype (47). It has been reported recently that B cell-
deficient mice (μMT heavy chain-deficient) are osteopenic due to increased 
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bone resorption caused by a decrease of B cell-secreted osteoprotegerin 
(OPG) (137). In contrast, Ebf1−/− mice, which lack all but the very earliest 
population of pro-B cells, have increased bone mass and increased 
osteoclasts. 

C. Pax5 

Pax5 is a member of the multigene family that encodes the Pax transcription 
factors. This highly conserved motif was originally identified in Drosophila 
(138). At present, nine paired box containing genes (Pax1–Pax9) have been 
isolated in mammals (131,139). Three Pax gene-deficient conditions have 
been studied, and all exhibit developmental mutations. The Pax1 gene is 
mutated in different forms of undulated, which have skeletal changes in the 
vertebra (140). It is unknown whether any of these mutant mice express an 
altered bone phenotype. Human disorders have also been associated with 
mutations of Pax genes. Pax3 is mutated in Waardenburg’s syndrome, which 
causes deafness, and Pax6 is altered in aniridia and in Peter’s anomaly 
(141,142). All of these mutations suggest the importance of Pax proteins in 
the specialization, proliferation, and migration of progenitor cells. 

The Pax5 gene codes for the transcription factor B-cell specific activation 
protein (BSAP) (143). During embryogenesis, Pax5 is transiently expressed 
in the mesencephalon and spinal cord in a pattern that is different from other 
Pax genes (143). Later in development, expression moves to the fetal liver 
where it correlates with the onset of B lymphopoiesis. Within the 
hematopoietic system, BSAP is expressed exclusively in the B lymphocyte 
lineage cells, extending from pro-B cells to mature B cells, but it is not found 
in terminally differentiated plasma cells (143,144). Testis is the only other 
tissue in the adult mouse that expresses BSAP. 

Loss of Pax5 results in an unanticipated massive decrease in trabecular 
bone in both the tibia and femur of 15-d-old mice (47). Bone volume (tibia) 
was reduced by 67%, and osteoid volume was reduced by 55%. Observed 
increases in bone resorption may be accounted for, at least in part, by a 
greater than 100% increase in the number of osteoclasts in Pax5-deficient 
(−/−) bone. These data demonstrate a marked increase in the number of 
osteoclasts in Pax5−/− mice and suggest that they are functional. The 
number of osteoblasts in the mutant mice was reduced, although not 
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significantly. These results imply that osteopenia in Pax5−/− mice was due, 
in large part, to an increase in osteoclasts. However, we cannot rule out the 
possibility that a delay in the development of osteoblasts contributes to the 
bone phenotype. In fact, a delay in osteoblast development may be 
responsible, at least in part, for the runting of these mice. Therefore, we 
propose that loss of Pax5 causes a bone phenotype by deregulating certain 
genes that enhance osteoclastogenesis and delay formation. 

VI. Role of Megakaryocytes in Bone Turnover 

Similar to their role in hematopoiesis, cells of the osteoblast lineage support 
megakaryopoiesis. Studies by Ahmed et al. (145) demonstrated that culture 
of CD34+ cells on osteoblast lineage cells resulted in expansion of CD34+ 
and CD34+CD41+ (early MK) cells. When various combinations of cytokines 
were added to the cultures, it was determined that SCF, IL-3, IL-11, and 
thrombopoietin (TPO) were most effective in increasing CD34+CD41+ and 
CD41+ (late MK) cell number. Similarly, it was determined that BMSC were 
able to support MK differentiation and platelet formation (71). In other 
experiments, it was shown that culture of human MK on BMSC, which 
express SCF, resulted in adhesion of the MK to the BMSC and proliferation 
of the MK through SCF-c-kit interaction (146). Separation of the MK from the 
BMSC by a cell-impermeable membrane blocked proliferation, indicating that 
a cell-cell interaction was required. 

MK arise from pluripotential hematopoietic progenitor cells that pass through 
a series of identifiable stages of differentiation that culminate in the 
production of terminally differentiated MK and the release of platelets. As 
with B cell differentiation, the molecular dissection of the MK differentiation 
pathway has been greatly facilitated by the identification of transcription 
factors that are required for the successful advance of cells from stage to 
stage. Loss of these specific factors precludes the cells from continued 
maturation and results in the accumulation of cells at the latest stage of 
differentiation, before the arrest. The selective loss of two different 
transcription factors, GATA-1 and NF-E2, which were originally thought to be 
required exclusively for erythroid lineage development, has now been shown 
to play a critical role in MK differentiation. GATA-1 knockdown mice and NF-
E2-deficient mice exhibit a phenotype characterized by marked 
megakaryocytosis and thrombocytopenia (147,148). 
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The GATA family of zinc-finger transcription factors in vertebrates is 
presently composed of six members, GATA-1 through GATA-6. GATA is a 
single polypeptide chain with DNA binding activity in the C-terminal zinc 
finger (149). GATA-1 is almost solely restricted to hematopoietic lineage 
cells and is a critical factor for erythroid cell development. GATA-1 is 
expressed in MK, multipotential hematopoietic progenitors, and mast cells 
(150). In GATA-1-deficient mice, MK number is increased approximately 10-
fold in the bone marrow and spleen of adult mice, and platelet numbers in 
the peripheral blood are markedly reduced (15% of normal) (151). It has 
been documented that MK from GATA-1-deficient mice express lower levels 
of TGFβ-1, platelet-derived growth factor, and vascular endothelial growth 
factor than do wild-type control MK (152). TGFβ-1 levels are increased in the 
spleen and bone (including bone marrow) of GATA-1-deficient mice but not 
in the plasma. The animals develop myelofibrosis after 1 yr of age (152,153), 
which is preceded by a high bone mass phenotype (detected after 3–4 
months), which is associated with a greater than 3-fold increase in bone 
volume and bone formation indices (154). 

NF-E2 is a heterodimeric nuclear protein comprised of two polypeptide 
chains, a hematopoietic-specific 45-kDa subunit and a widely expressed p18 
subunit. Both proteins belong to the basic leucine zipper family of 
transcription factors (155,156). Expression of p45 is restricted to erythroid 
precursors, MK, mast cells, and multipotential progenitors. Mice lacking p45 
NF-E2 exhibit profound thrombocytopenia, which results from a maturational 
arrest of MK and a lack of platelets in the peripheral blood (148). MK number 
is increased 2- to 5-fold in the bone marrow and spleen of adult p45NF-E2-
deficient mice. These mice respond to exogenous TPO with a marked 
increase in bone marrow cell proliferation but no detectable increase in 
platelet production. Although MK number is markedly elevated in p45 NF-E2-
deficient mice, TPO levels are normal (148,157,158) Interestingly, these 
mice also develop a high bone mass phenotype with up to a 5-fold increase 
in bone volume and bone formation parameters (154,159). 

The strikingly similar bone phenotype, along with the elevated osteoblast 
number and MK number in both NF-E2 and GATA-1-deficient animal 
models, led us to examine the potential interaction between osteoblast 
lineage cells and MK. We showed that when osteoblast lineage cells were 
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cocultured with MK, osteoblast proliferation was increased 3- to 6-fold by a 
mechanism that required direct cell-to-cell contact (154). Miao et al. (160) 
also demonstrated that direct cell-to-cell contact of BMSC with MK enhanced 
osteoblastogenesis. In other studies, MK have also been reported to 
stimulate the differentiation of osteoblasts as defined by enhanced 
expression of procollagen (161). Thus, MK acts to stimulate both osteoblast 
proliferation and differentiation in vitro. 

MK may also play a role in osteoclastogenesis as documented by the 
expression of OPG and RANKL in MK (161,162,163,164,165,166). The fact 
that MK expresses RANKL suggests that they may be an additional vector 
for osteoclast induction, particularly during inflammatory responses. 

In contrast, MK expression of OPG suggests that MK may also play a role in 
inhibiting osteoclastogenesis. Recent data by our laboratory demonstrated 
that, in vitro, MK and MK conditioned media (CM) inhibited osteoclast 
development by up to 10-fold (98). We examined MK CM for known 
inhibitors of osteoclastogenesis and could demonstrate by ELISA that low 
levels of OPG were present (167). However, Chagraoui et al. (164) did not 
find OPG in MK CM, suggesting that the OPG, if secreted, was not 
detectable because it was bound to MK-expressed RANKL (161,164,165). 
Importantly, in our work, the addition of anti-OPG antibody failed to 
neutralize the ability of MK CM to inhibit osteoclast formation, suggesting 
that MK-secreted OPG was not responsible for the inhibition of osteoclast 
development. 

We confirmed that OPG was not responsible for the MK-mediated inhibition 
of osteoclast development by testing MK derived from OPG-deficient (−/−) 
mice. These experiments demonstrated that MK from OPG−/− and control 
mice inhibited osteoclast formation equivalently. Finally, using tandem mass 
spectrophotometry, we demonstrated that there exists a factor or factors in 
MK CM that inhibit osteoclast development, and while the identity of this 
inhibitory factor remains to be determined, it was not any of the major factors 
known to inhibit osteoclast formation including OPG, IL-4, IL-10, IL-12, IL-13, 
IL-18, interferon γ (IFN-γ), TGFβ, GM-CSF, osteoclast inhibitory lectin, 
calcitonin, amylin, or calcitonin-gene-related peptide (167). 

Taken together, these data suggest that MK play a dual role in regulating 
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skeletal mass. They secrete a factor(s) that inhibits osteoclast formation 
while directly stimulating osteoblast proliferation and differentiation. Both of 
these MK-mediated actions may contribute to the osteosclerosis seen in 
GATA-1-deficient and NF-E2-deficient mice. 

VII. Cytokines and Local Immune Cell Factors as 
Regulators of Bone Cell Functions 

A. Receptor activator of nuclear factor-κB ligand (RANKL), 
receptor activator of nuclear factor-κB (RANK), and 
osteoprotegerin (OPG) 

Characterization of the functions of RANKL and its receptors (RANK and 
OPG) (Fig. 2 ) have contributed significantly to the emergence of 
osteoimmunology, specifically with respect to examination of the interplay 
between active immunity and maintenance of bone homeostasis 
(16,168,169). Because there are a number of recent reviews on the diverse 
physiological function of the RANKL-RANK-OPG axis (169,170,171), we will 
focus here on its role in the context of osteoimmunology. 

The discovery of RANKL, a TNF superfamily member that has potent activity 
as a stimulator of both the formation of osteoclasts from precursor cells and 
bone-resorbing activity in mature osteoclasts, clarified our understanding of 
how stromal and osteoblastic cells regulate bone resorption (172,173). 
RANKL is the critical cytokine that directs the terminal differentiation of 
osteoclast precursor cells and stimulates and maintains resorption activity in 
mature cells. Importantly, this activity occurs in vitro in the absence of BMSC 
(172,173,174). 

In vivo RANKL-deficient mice have significant osteopetrosis and no 
osteoclasts, but a normal number of monocyte/macrophages (175). These 
mice also exhibit failed tooth eruption, which is a common defect associated 

Figure 2 
Activation of osteoclastogenesis. Osteoclast precursor cells replicate and are 
induced to express RANK when stimulated by the binding of M-CSF to its 
receptor c-fms. In states in which osteoclastogenesis is stimulated, osteoblast 
or stromal support cells (more ...) 

�
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with developmental osteopetrosis, and diversion of hematopoiesis to the 
spleen and liver because a functional bone marrow cavity fails to form in the 
absence of osteoclasts (175,176). Marrow stromal and osteoblastic cells 
produce RANKL, and regulation of its mRNA expression in murine marrow 
cell cultures correlates with activation of osteoclastogenesis (177). Many well-
known osteotropic factors, including cytokines and hormones, are now 
believed to exert their primary osteoclastogenic activity by inducing RANKL 
expression in osteoblast lineage cells (16,170). Conversely, the shedding of 
membrane-bound RANKL appears to be a mechanism for inhibiting 
osteoblast-mediated osteoclast formation by removing RANKL from the 
osteoblast surface. The process appears mediated by expression of matrix 
metalloproteinase (MMP) 14 (178) because osteoclasts were increased in 
mice deficient in this enzyme. 

OPG is a novel secreted TNF receptor superfamily member (TNFRSF-11B) 
and a potent inhibitor of osteoclast formation that acts as a decoy receptor 
for RANKL (173,174,179). It was initially identified as a soluble factor that 
was capable of inhibiting osteoclastogenesis in vitro (179,180) and inducing 
osteopetrosis when transgenically overexpressed in mice (179). In marrow, it 
is produced by a variety of cells, including stromal cells, B lymphocytes, and 
dendritic cells (181). In addition to RANKL, OPG also binds the TNF-like 
ligand TRAIL (TNF-related apoptosis inducing ligand) (182). Mice that lack 
OPG were shown to have severe osteoporosis, increased numbers of 
osteoclasts, and arterial calcification (183,184). The latter finding highlights a 
potential genetic link between osteoporosis and vascular calcification (170). 
Overexpression of OPG in transgenic mice caused osteopetrosis, decreased 
osteoclast numbers, and extramedullary hematopoiesis (179). 

The biologically active receptor for RANKL is RANK. Like OPG, RANK is a 
TNF receptor superfamily member (TNFRSF-11A). It was first identified on 
dendritic cells (185), but it is also present on osteoclast precursors and 
mature osteoclasts (186). RANK expression at the RNA level is detected in a 
variety of cell types and tissues (185). RANK-deficient mice were 
demonstrated to phenocopy the defect in osteoclast development that was 
observed in the RANKL-knockout mouse, confirming the exclusive specificity 
of RANKL for osteoclast-expressed RANK (186). In humans, gain-of-function 
mutations in RANK were found to be associated with familial expansile 
osteolysis and expansile skeletal hyperphosphatasia 
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(17,18,19,20,21,187,188,189,190,191). 

Although OCL can form in vitro in the absence of RANK or TNF receptor-
associated factor (TRAF) 6 signaling when exposed to a cocktail of cytokines 
and growth factors (192,193,194), the significance of this in vitro finding is 
questionable because osteoclasts are not detected in RANK-deficient 
animals (186,195). More likely, additional cytokines and growth factors 
produced at sites of inflammation or physiologically during bone turnover act 
as cofactors that enhance or modulate the response of osteoclasts and their 
precursors to RANKL-RANK stimulation (196,197,198). 

B. RANKL-RANK mediated signals for osteoclast differentiation 

Efforts aimed at elucidating the signaling mechanisms involved in RANKL-
mediated osteoclastogenesis have been informative (16,170,199). RANK 
signal transduction is mediated by adapter proteins called TRAFs 
(174,200,201,202,203). Of the six known TRAFs, RANK interacts with 
TRAF1, -2, -3, and -5 in a membrane-distal region of the cytoplasmic tail and 
with TRAF6 at a distinct membrane-proximal Pro-X-Glu-X-X-(aromatic/acid 
residue) binding motif (200,201,202,203). Genetic experiments show that 
TRAF6-deficient mice have severe osteopetrosis, implying that the key 
signals sent through RANK in osteoclast precursors are mediated by the 
adapter molecule TRAF6 (204,205) (Y. Choi, unpublished data). 

Downstream of TRAF6, RANKL signaling in osteoclasts has been shown to 
activate phosphatidylinositide-3-kinase (PI3K), TAK1, c-Src, JNK1, p44/42 
ERK, p38 MAPK, Akt/PKB, and mTOR, and subsequently a series of 
transcription factors including NF-κB, c-Fos, Fra-1, and NFATc1. This aspect 
of RANKL signaling has been recently reviewed elsewhere 
(16,168,169,170,171,206,207,208). In addition to the signaling pathways 
mentioned above, RANKL stimulation also triggers reactive oxygen species 
(ROS) production (209). ROS, like superoxide anions, hydroxyl radicals, and 
H2O2, have been associated with many cellular responses, including 
metabolic bone diseases found in aged osteoporotic women (210). Recent 
reports suggest that ROS act as a key second messenger during 
osteoclastogenesis (209), such that RANKL stimulation induces the 
production of ROS in osteoclast precursors via the small GTPase Rac1 and 
the ROS-inducing factor nicotinamide adenine dinucleotide phosphate 
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oxidase 1. It is not clear how ROS cross-regulates the signaling pathways 
necessary for osteoclast differentiation, although one interesting hypothesis 
is that ROS may potentiate MAPK activation by inactivating protein tyrosine 
phosphatase activity in a manner similar to mechanisms recently described 
in B cells (211). 

C. Costimulation in RANKL-induced osteoclast differentiation 

The formation and activation of osteoclasts are processes that are tightly 
regulated by osteoblast lineage cells, which provide at least two known 
essential factors for osteoclastogenesis, RANKL and M-CSF (Fig. 2 ). In 
addition, stromal cells produce various osteotropic factors that influence 
osteoclastogenesis. These factors can be divided into two groups: those that 
influence the activity of osteoblasts (e.g., TNFα, which induces RANKL on 
osteoblasts), and those that affect the osteoclast precursors or osteoclasts 
per se. A series of experiments showed that M-CSF and RANKL together 
appear to be sufficient to induce the differentiation of bone marrow 
precursors, spleen cells, or blood monocytes to become mature osteoclasts 
in vitro. However, the expression of M-CSF, RANKL, and their receptors is 
not limited to bone cells. For example, M-CSF and RANKL are important 
cytokines for the activity/viability of macrophages and dendritic cells. Despite 
this pleiotropy, osteoclasts are not found in soft tissues, raising the question 
of why the same set of signaling receptors leads to different functional 
outcomes in different anatomical environments. One possibility is the 
existence of costimulatory molecule(s) present only in bone. Alternatively, 
there could be powerful inhibitors of osteoclastogenesis in soft tissues that 
are not found in bone. 

To address this question, we proposed the hypothesis a few years ago that 
there exists a mechanism in preosteoclasts analogous to the costimulation 
requirement for T cell activation (212). Hence, our hypothesis proposed that 
osteoclast differentiation is controlled not only by two “essential factors,” M-
CSF and RANKL (analogous to major histocompatibility complex/antigen 
complexes interacting with T-cell receptor(TCR)/CD4 or TCR/CD8), but also 
by other “non-essential but critical costimulatory molecules” (analogous to B7 
family proteins interacting with CD28) (213). Because the in vivo 
concentrations of M-CSF and RANKL produced by osteoblasts in response 
to bone-resorbing hormones are likely to be much lower than that used in in 
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vitro experiments, costimulatory molecules are likely to influence 
physiological differentiation of osteoclasts in a manner analogous to T cell 
activation, whereby signals from the costimulatory receptor CD28 amplify 
requisite signals from the TCR complex (212,213). In addition, as with T 
cells, the requirement for a particular set of costimulatory factors/receptors 
for osteoclasts should vary depending on the microenvironment. Cells 
expressing ligands for costimulatory receptors expressed on osteoclasts also 
vary, but those interacting with osteoclasts themselves, such as osteoblasts, 
most often provide costimulation (analogous to dendritic cell providing B7 
family proteins or TNF family proteins like 4–1BBL to T cells) (212). The 
signals resulting from the interaction of costimulatory factors and their 
receptors on osteoclast precursors determine the efficacy of the signals from 
the essential osteoclastogenic receptor, RANK (similar to TCR/CD4 or 
TCR/CD8 for T cells), and the sum of the two will determine the quality of 
osteoclast differentiation and activation. 

In support of the costimulation hypothesis, we have identified a novel cell 
surface receptor, OSCAR, which is preferentially expressed on osteoclasts, 
and have shown that in addition to normal RANKL-RANK signaling, 
interaction of OSCAR with its putative ligand (OSCAR-L) is important for 
osteoblast-induced osteoclast differentiation (213). Moreover, it appears that 
OSCAR-L expression is most prevalent on osteoblastic cells (213). 
Therefore, the OSCAR receptor/ligand pairing could be characterized as a 
putative costimulation receptor/factor for efficient osteoclast differentiation 
and may provide bone-specific costimulation required for the differentiation 
of osteoclasts in conjunction with the essential factors M-CSF and RANKL. 
This signaling combination may provide a mechanistic explanation of why 
osteoclasts are found only on bone surfaces in vivo. 

Although the nature of bone-specific costimulatory molecules, such as 
OSCAR-L, requires further study, a series of recent experiments have 
supported our costimulation hypothesis (41,214). For osteoclast 
development in vivo, it appears that some surface receptors on osteoclast 
precursors, such as PIR-A, OSCAR, TREM2, and SIRPβ1, associate with 
ITAM-containing molecules, DAP12 and FcRγ, and provide necessary 
costimulation and activation of Ca2+ signaling (41,214). Hence, whereas a 
single deficiency for either DAP12 or FcRγ results in only minor osteoclast 
defects, double deficiency results in severe osteopetrosis (41,214). 
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Additional analysis of mutant mice suggests that these receptors activate 
calcineurin via Syk and phospholipase-C (PLC)γ (41,214,215). More 
signaling proteins have been identified in lymphocytes that bridge Syk (or 
ZAP-70) and PLCγ, and lead to Ca2+ activation (216,217). Indeed, Gab2 and 
PLCγ2 have recently been shown to be critical for generation of functional 
osteoclasts (218,219). In addition, after the implication that Tec family 
kinases are likely to be involved in ITAM-mediated signaling (220), we have 
obtained data that Brutun’s tyrosine kinase-deficient cells from X-linked 
immunodeficiency mice have defects in the multinucleation of preosteoclasts 
(Y. Choi, unpublished data). It will not be surprising if additional molecules 
(or family members) that were previously implicated in the ITAM-mediated 
signaling in immunocytes (e.g., lymphocytes or monocytes) are identified as 
playing an equivalent role in osteoclast differentiation. 

However, it is important to point out that the osteopetrosis observed in the 
mice with defects in the costimulation pathway (e.g., DAP12/FcRγ double-
deficient mice) is much less severe than that in RANKL or RANK knockout 
mice, and that, in contrast to RANKL or RANK knockout mice, these animals 
exhibit significant numbers of osteoclasts. This is consistent with the 
hypothesis that costimulatory receptors for osteoclast differentiation are not 
essential and that multiple redundancies probably exist (213). 

Sustained Ca2+ mobilization is necessary for osteoclast differentiation 
because NFATc1 activation is absolutely required for the process (221). The 
NFAT family of transcription factors was originally identified as a set of 
regulators of gene transcription in activated T cells (222). Recently, it was 
found that RANK signaling induces expression of the NFAT family member 
NFATc1 (NFAT2) and that this factor is critical for osteoclast development 
because NFATc1-deficient precursor cells exhibit an absolute failure to 
differentiate into osteoclasts (221). Like other NFAT family members, the 
induction and activation of NFATc1 relies on the calcium-regulated 
phosphatase, calcineurin, thereby explaining negative effects of calcineurin 
inhibitors like FK506 and cyclosporine on osteoclastogenesis. The ability of 
NFATc1 to regulate its own expression points to the existence of an 
autonomic feedback loop. This likely triggers NFATc1 induction through a 
TRAF6 and c-fos-mediated mechanism that is initiated by RANKL/RANK 
stimulation (223). Thus, Ca2+ signaling via costimulatory receptors on 
preosteoclasts is critical for amplification of NFATc1 activity to a level 
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sufficient for osteoclast differentiation. Interestingly, NFATc1, in conjunction 
with microphthalmia-associated transcription factor (MITF) and PU.1, 
transactivates OSCAR expression during RANKL-induced osteoclast 
differentiation (Y. Choi, unpublished data). This suggests that there is a 
positive feedback circuit from RANKL to NFATc1 via costimulatory receptors 
such as OSCAR during osteoclast differentiation, which ensures a high level 
of NFATc1 activity. Recent data suggest that costimulatory receptors also 
activate another transcription factor, cAMP response element-binding 
protein, via CaMKIV, that cooperates with NFATc1 to activate osteoclast-
specific genes (224). 

Key to the analogy with lymphocyte costimulation, RANK, like TCR, is still 
the primary, requisite receptor, the absence of which renders the secondary 
receptors inconsequential for osteoclastogenesis. However, we still do not 
fully understand why this system evolved and whether there exists a state in 
osteoclast development that mimics anergy(induced tolerance) in 
lymphocytes. 

D. Macrophage colony-stimulating factor 

In addition to RANKL, M-CSF is important for normal osteoclast formation 
(Fig. 2 ). This cytokine was originally identified as a regulator of 
macrophage formation (225); however, it was subsequently shown that a 
spontaneous mouse mutant (op/op) with a phenotype of absent osteoclasts 
and defective macrophage/monocyte formation was deficient in M-CSF 
(226,227,228). Injection of M-CSF into op/op mice corrected the defect in 
osteoclast formation and bone resorption (229), as did expression of the 
protein specifically in osteoblastic cells (230). 

Stimulators of bone resorption were shown to increase the production of M-
CSF in bone (231,232,233), and multiple transcripts of M-CSF are produced 
by alternative splicing (234,235). The membrane-bound form of M-CSF is 
regulated by stimulators of resorption and facilitates the differentiation of 
osteoclasts from precursor cells (232,236). This may be significant because 
in marrow cultures soluble M-CSF inhibited OCL formation that was 
stimulated by 1,25-dihydroxyvitamin D3 (237,238). 

The role of M-CSF in regulating osteoclast apoptosis has also been 
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examined. Addition of M-CSF to mature osteoclast cultures prolongs their 
survival (239,240). This response may be important for the development of 
the osteopetrotic phenotype in op/op mice because transgenic expression in 
myeloid cells of Bcl-2, which blocks apoptosis, partially reversed the defects 
in osteoclast and macrophage development in these animals (241). The 
effects of M-CSF on osteoclasts has been linked to activation of a Na/HCO3 
cotransporter (242). M-CSF also is a potent stimulator of RANK expression 
in osteoclast precursor cells (22), and it is critical for the expansion of the 
osteoclast precursor pool size (24). 

E. Additional colony stimulating factors 

Like M-CSF, GM-CSF and IL-3 affect osteoclast differentiation 
(238,243,244). Both appear to inhibit RANKL-mediated osteoclastogenesis 
(245,246). In contrast, these factors enhance the expansion of osteoclast 
precursor cells (247,248). It is now known that these CSF drive a common 
myeloid precursor cell toward lineages other than osteoclasts (3,245). Both 
also inhibit expression of TNF receptors on myeloid precursor cells (249). IL-
3 also inhibits osteoblast differentiation, which may be one mechanism for 
how multiple myeloma influences bone because this malignancy can 
produce IL-3 (250). 

G-CSF decreases bone mass in rodents when injected systemically 
(251,252), and this response appeared to result from increased osteoclast 
formation and decreased osteoblast function. G-CSF also mobilizes 
hematopoietic precursor cells from bone marrow into the circulation (253) 
and increases the number of circulating osteoclast precursor cells (254), 
which is likely related to its ability to increase osteoclast resorptive activity. In 
mice, overexpression of G-CSF inhibited the ability of osteoblasts to respond 
to bone morphogenetic protein (255). In addition, mice overexpressing G-
CSF had increased bone resorption, which was not increased with 
ovariectomy, as occurred in wild-type mice (256). 

F. Interleukin-1 

There are two separate IL-1 gene products, IL-1α and IL-1β, which have 
identical activities (257). IL-1 is a potent peptide stimulator of in vitro bone 
resorption (258), and it also has potent in vivo effects (259). Its effects on 
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resorption appear to be both direct on osteoclasts (260) and indirect through 
its ability to stimulate RANKL production (261). In addition, both RANKL- and 
1,25-dihydroxyvitamin D3-stimulated osteoclast formation in vitro are 
mediated, in part, by effects on IL-1 (197,262). IL-1 enhances the activity of 
RANKL to stimulate osteoclastogenesis (263) and also increases 
prostaglandin synthesis in bone (258,264), which may account for some of 
its resorptive activity because prostaglandins are also potent resorption 
stimuli (265). Direct stimulation of osteoclastogenesis by IL-1 in mixed 
murine stromal and hematopoietic cell cultures is dependent on RANKL 
expression in the stromal/osteoblastic cells but not TNF (266). 

IL-1 is produced in bone (267), and its activity is present in bone marrow 
serum (268,269). A natural inhibitor of IL-1, IL-1 receptor antagonist, is an 
analog of IL-1 that binds but does not activate the biologically important type 
I IL-1 receptors (270,271,272). 

There are two known receptors for IL-1: type I and type II (273). All known 
biological responses to IL-1 appear to be mediated exclusively through the 
type I receptor (274). IL-1 receptor type I requires interaction with a second 
protein, IL-1 receptor accessory protein, to generate postreceptor signals 
(275,276,277). Signaling through type I receptors involves activation of 
specific TRAFs and NF-κB (278,279). IL-1 receptor type II is a decoy 
receptor that prevents activation of type I receptors (280). One recent report 
found a decrease in the bone mass of mice that were deficient in the 
bioactive type I IL-1 receptor (281); however, this has not been our 
experience (282). 

Expression of myeloid differentiation factor 88 (MyD88) but not Toll/IL-1 
receptor domain-containing adapter inducing IFN-β (TRIF) was necessary for 
IL-1 to stimulate RANKL production in osteoblasts and prolong the survival of 
osteoclasts (283). Survival of osteoclasts by treatment with IL-1 appears to 
require PI3K/AKT and ERK (284). 

G. Tumor necrosis factor 

Like IL-1, TNF represents a family of two related polypeptides (α and β) that 
are the products of separate genes (285,286,287,288,289). TNFα and TNFβ 
have similar biological activities and are both potent stimulators of bone 
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resorption (258,290,291). 

In vivo administration of TNFα was shown to increase the serum calcium of 
mice (291) and to stimulate new osteoclast formation and bone resorption 
(292). Like IL-1, TNF also enhances the formation of OCL in bone marrow 
culture (291). The ability of TNF to stimulate osteoclast formation in mixed 
stromal cell/osteoclast precursor cell cultures was dependent on the 
production of IL-1 (293). In addition, TNF-induced osteolysis was found to be 
dependent on M-CSF production (294). 

TNF was shown to directly stimulate osteoclast formation in an in vitro 
culture system by a mechanism that was independent of RANK because it 
occurred in cells from RANK-deficient mice (192,193,295). The significance 
of this in vitro finding is questionable, however, because in vivo 
administration of TNF to RANK-deficient mice caused only an occasional 
osteoclast to form (195). 

Like IL-1, TNF binds to two cell surface receptors, TNF receptor 1 or p55 and 
TNF receptor 2 or p75 (296). In contrast to IL-1, however, both receptors 
transmit biological responses. Mice deficient in TNF receptor 1 and TNF 
receptor 2 have been produced (297,298,299). These animals appear 
healthy and are not reported to have an abnormal bone phenotype. TNF may 
also regulate c-fms expression in osteoclast precursor cells (34) 

TNF also appears to regulate the abundance of osteoclast precursor cells in 
the bone marrow by increasing expression of c-fms, the receptor for M-CSF 
(300). It also enhances RANK signaling mechanisms, which activate 
osteoclasts and their precursor cells (196), and it enhances expression of the 
costimulatory molecule PIR-A leading to activation of NFATc1 (301). 

H. Additional TNF superfamily members 

Fas ligand (FasL), which binds its receptor Fas on responsive cells, 
regulates apoptosis and other cellular processes in multiple cell types (302). 
In osteoblasts, FasL inhibits differentiation through a caspase 8-mediated 
mechanism (303). In osteoclasts, addition of FasL to cultures of osteoclast 
precursor cells, which were also treated with M-CSF and RANKL, increased 
osteoclast formation. Osteoclast precursors and mature osteoclasts express 
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Fas and FasL (304). Expression of Fas was up-regulated by RANKL 
treatment in the RAW 264.7 osteoclast precursor cell line and treatment of 
mature osteoclasts with Fas-induced apoptosis (305). However, in contrast 
to their similar effects on osteoclastogenesis in cultures of precursor cells, 
there appears to be counterregulatory roles of RANKL and FasL on mature 
osteoclast apoptosis because at high concentrations, RANKL inhibited the 
ability of FasL to induce this response (306). The effect of FasL deficiency on 
bone mass is controversial. One group has found that this index is 
decreased in FasL-deficient mice (305), whereas another found it to be 
increased (307). However, the significance of studying bone mass in Fas- or 
FasL-deficient mice is probably minimal because these models have a 
generalized lymphoproliferative disorder, which activates a wide variety of 
immune responses affecting bone and makes interpreting the results of 
these studies difficult. Most recently, it was shown that estrogen receptor α in 
osteoclasts regulates FasL production by these cells, which, in turn, 
mediates bone loss induced by estrogen withdrawal in mice (308). 

TRAIL is another TNF-superfamily member that has a wide variety of 
activities. Treatment of osteoclasts with TRAIL induced apoptosis (309), and 
this effect may be mediated through up-regulation of the death receptor DR5 
(310). In bone, injection of TRAIL for 8 d in 4-wk-old mice induced an 
increase in bone mass. In vitro this effect was associated with an increase in 
the cyclin-dependent kinase inhibitor, p27Kip1, through effects of TRAIL on 
the ubiquitin-proteosome pathway (311). TRAIL may also be a factor in the 
effects of myeloma on osteoblasts (312). 

CD40 ligand (CD40L) is involved in the differentiation of naive T lymphocytes 
into T-helper (TH) 1 effector cells (313). In humans, deficiency of CD40L 
causes X-liked hyper IgM (XHIM) syndrome. Bones of XHIM patients 
develop spontaneous fractures and are osteopenic (314). Activated T 
lymphocytes from XHIM patients have normal RANKL and deficient IFN-γ 
production, which may contribute to decreased bone mass in these patients 
(314). In addition, expression of CD40L in rheumatoid arthritis synovial cells 
induced RANKL expression in these cells and enhanced their ability to 
stimulate osteoclastogenesis, which suggests that this mechanism is 
involved in the effects of rheumatoid arthritis on bone (315). 

I. Interleukin-6 
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IL-6, like IL-1 and TNF, has a wide variety of activities related to immune cell 
function and to the replication and differentiation of a number of cell types 
(316,317). Osteoblastic cells (both rodent and human) produce IL-6 and IL-6 
receptors (318,319). Another source of IL-6 in the bone microenvironment is 
BMSC, which can produce IL-6 after they are stimulated with IL-1 and TNF 
(320). The receptor for IL-6 is composed of two parts: a specific IL-6 binding 
protein (IL-6 receptor), which can be either membrane-bound or soluble, and 
gp130, an activator protein that is common to a number of cytokine receptors 
(321). Soluble IL-6 receptor binds IL-6, and this complex can then activate 
cells that contain the gp130 signal peptide (321,322). The shedding of IL-6 
receptor from osteoblasts is stimulated by IL-1 and TNFα (323). 

The ability of IL-6 to stimulate bone resorption in vitro is variable and 
depends on the assay system that is used (319,324,325,326). It appears that 
a major effect of IL-6 is to regulate osteoclast progenitor cell differentiation 
into mature osteoclasts (327,328). IL-6 also directly stimulates both RANKL 
and OPG mRNA production in bone (329), and it enhances production of 
prostaglandins (330). There is also one publication that suggests that IL-6 
can stimulate osteoclastogenesis in vitro by a RANKL-independent 
mechanism (331). IL-6 appears to mediate some of the increased resorption 
and bone pathology that is seen in the clinical syndromes of Paget’s disease 
(185), hypercalcemia of malignancy (332), fibrous dysplasia (333), giant cell 
tumors of bone (334), and Gorham-Stout disease (335). There have been 
conflicting data on the role of IL-6 in PTH-mediated responses in bone 
because some investigators have found it critical (336) whereas others have 
not (337). 

J. Additional interleukin-6 family members 

IL-6 is a member of a group of cytokines that share the gp130 activator 
protein in their receptor complex (338,339). Each family member utilizes 
unique ligand receptors to generate specific binding. Signal transduction 
through these receptors utilizes the JAK/STAT (Janus kinase/signal 
transduction and activators of transcription) pathway (321). 

1. Interleukin-11 

IL-11 is produced by bone cells in response to a variety of resorptive stimuli 
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(340). It stimulates osteoclast formation in murine bone marrow cultures 
(341) and bone resorption in a variety of in vitro assays (342,343). 
Interestingly, it has no effect on isolated mature osteoclasts. In mice deficient 
in the specific IL-11 receptor, trabecular bone mass is increased, and this 
appears to result from decreased bone turnover, which is associated with 
decreased in vitro osteoclast formation and resorption (344). 

2. Leukemia inhibitory factor 

LIF is produced by bone cells in response to a number of resorption stimuli 
(86,345,346). The effects of LIF on bone resorption are variable. In a number 
of in vitro model systems, LIF stimulated resorption by a prostaglandin-
dependent mechanism (347), whereas in other in vitro assays, it had 
inhibitory effects (348,349). In neonatal murine calvaria cultures, LIF 
stimulated both RANKL and OPG (329). 

Local injections of LIF in vivo were shown to increase both resorption and 
formation parameters, as well as the thickness of the treated bones (350). In 
mice that lacked the specific LIF receptor and hence, could not respond to 
LIF, bone volume was reduced, and osteoclast number was increased 6-fold 
(351). 

3. Oncostatin M 

Oncostatin M was demonstrated to stimulate multinuclear cell formation in 
murine and human bone marrow cultures (322,352). These cells appeared to 
be macrophage polykaryons, however, and not osteoclasts (352). In 
contrast, oncostatin M inhibited OCL formation that was stimulated by 1,25-
dihydroxyvitamin D3 in human marrow cultures (352), and it decreased bone 
resorption rates in fetal mouse long bone cultures (353). In vivo, 
overexpression of oncostatin M in transgenic mice induced a phenotype of 
osteopetrosis (354). Hence, it appears that oncostatin M is an inhibitor of 
osteoclast formation and bone resorption (355). 

The role of all IL-6 family members in osteoclast formation has to be 
examined in the light of data demonstrating that mice lacking the gp130 
activator protein have an increased number of osteoclasts in their bones 
compared with normal animals (356). Because gp130 is an activator of 
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signal transduction for all members of the IL-6 family, this result argues that 
at least some IL-6 family members have a predominantly inhibitory effect on 
osteoclast formation and bone resorption. Available data implicate oncostatin 
M (353) and possibly LIF (348,349) in this role. 

K. Interleukin-7 

IL-7 is a cytokine that has diverse effects on the hematopoietic and 
immunological systems (357) and is best known for its nonredundant role in 
supporting B and T lymphopoiesis. Studies have demonstrated that IL-7 also 
plays an important role in the regulation of bone homeostasis (358,359). 
However, the precise nature of how IL-7 affects osteoclasts and osteoblasts 
is controversial, because it has a variety of actions in different target cells. 
Systemic administration of IL-7 up-regulated osteoclast formation in human 
peripheral blood cells by increasing osteoclastogenic cytokine production in 
T cells (360). Significantly, IL-7 did not induce bone resorption and bone loss 
in T cell-deficient nude mice in vivo (361). In addition, treatment of mice with 
a neutralizing anti-IL-7 antibody inhibited ovariectomy-induced proliferation of 
early T cell precursors in the thymus, demonstrating that ovariectomy up-
regulates T cell development through IL-7. This latter effect may be a 
mechanism by which IL-7 regulates ovariectomy-induced bone loss (362). 
However, the interpretation of results from in vivo IL-7 treatment studies is 
complicated by secondary effects of IL-7, which result from the production of 
bone-resorbing cytokines by T cells in response to activation by this cytokine 
(360,361). 

In contrast with previously reported studies (358,360,361), we found 
differential effects of IL-7 on osteoclastogenesis (363). IL-7 inhibited 
osteoclast formation in murine bone marrow cells that were cultured for 5 d 
with M-CSF and RANKL (363). In IL-7-deficient mice, osteoclast number was 
markedly increased and trabecular bone mass was decreased compared 
with wild-type controls (364). In addition, we found that trabecular bone loss 
after ovariectomy was similar in wild-type and IL-7-deficient mice (364). 
Curiously, IL-7 mRNA levels in bone increase with ovariectomy, and this 
effect may be linked to alterations in osteoblast function with estrogen 
withdrawal (359,365). Addition of IL-7 to the medium of newborn murine 
calvaria cultures inhibited bone formation, as did injection of IL-7 above the 
calvaria of mice in vivo (359). When IL-7 was overexpressed locally by 
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osteoblasts, trabecular bone mass was increased compared with wild-type 
mice (366). Furthermore, targeted overexpression of IL-7 in IL-7-deficient 
mice rescued the osteoporotic bone phenotype of the IL-7-deficient mice 
(367). These studies indicated that the actions of IL-7 on bone cells are 
dependent on whether IL-7 is delivered systemically or locally. 

L. Interleukin-8 and other chemokines 

Recruitment and homing of myeloid cells often occur under the direction of 
chemokines and their receptors. This superfamily of relatively small proteins 
induce interactions through cognate G protein-coupled receptors to initiate 
cytoskeletal rearrangement, adhesion, and directional migration (368,369). 
Chemokines can be divided into four branches, depending on the spacing 
and sequence motifs of their first cysteine (C) residues. These are CXC, CC, 
C, and CX3C, where X is any other amino acid (370,371). The majority of 
chemokine receptor interactions occur through the CC and CXC 
chemokines, which are referred to as major, whereas C and CX3C 
chemokines are referred to as minor. 

Many cells produce chemokines that bind specific G protein-coupled 
receptors. IL-8, a CXC chemokine, is produced by osteoclasts (372) and 
stimulates osteoclastogenesis and bone resorption by a mechanism that is 
reported to be independent of the RANKL pathway (373,374,375). IL-8 may 
also be produced by certain cancers and stimulate lytic bone lesions in 
metastatic disease (373,374,375). Effects of IL-8 on bone may be in part 
mediated by up-regulation of nitric oxide synthase expression in osteoclasts 
(376). 

CCL3 (macrophage inflammatory protein-1 α) is a direct stimulator of 
osteoclastogenesis that is expressed in bone and bone marrow cells 
(377,378,379,380). This response is proposed to be independent of RANK 
activation (381). CCL3 is also a mediator of the osteolytic activity of multiple 
myeloma (382,383,384). Activation of osteoclastogenesis by CCL3 is 
mediated by the receptors CCR1 and CCR5 (385). Interestingly, CCL3 and 
IL-8 stimulate motility but suppress resorption in mature osteoclasts (386). 

CCL9 (macrophage inflammatory peptide γ) and its receptor, CCR1, are also 
an important chemokine ligand receptor interaction that regulates osteoclasts 
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(387). Injection of M-CSF to induce osteoclastogenesis and bone resorption 
in osteopetrotic tl/tl rats, which lack M-CSF, caused a rapid (within 2 d) up-
regulation of CCR1 as well as its ligand CCL9 in the bones of tl/tl mice and a 
rapid increase in osteoclastogenesis (388). Furthermore, antibodies to CCL9 
ameliorated the ability of M-CSF injections to stimulate osteoclastogenesis in 
this model. 

RANKL appears to be a major inducer of CCL9 and CCR1 in osteoclasts 
(389), and induction of CCR1 by RANKL is dependent on NFATc1 
expression (390). CCL9 and other chemokines that bind CCR1 (CCL3, 
CCL5, and CCL7) are produced by osteoclasts, osteoblasts, and their 
precursors in bone. In addition, expression of these chemokines in 
differentiating osteoblasts is induced by proinflammatory cytokines (IL-1 and 
TNF) (391). Additional chemokine receptors that are produced on 
osteoclasts include CCR3, CCR5, and CX3CR1 (385,387). 

Inhibition of CCR1 expression with small interfering RNA or by blocking 
NFATc1 activation with cyclosporin A inhibited migration of RAW 264.7 cells 
(a model for osteoclast precursors) and murine bone marrow cells in Boyden 
chambers (390). Furthermore, inhibition of CCR1 signaling with a mutated 
form of CCL5, which blocks the binding of CCR1 to its ligands, prevented 
OCL formation in murine bone marrow cultures (390). In addition, antibody 
neutralization of CCL9 inhibited RANKL-induced osteoclastogenesis by 60–
70% in murine bone marrow cultures (389). 

CXCL12 (stromal cell derived factor-1) and its receptor CXCR4 are involved 
in a variety of cellular processes including hematopoietic cell homeostasis 
and immune responses (392). Osteoclast precursor cells express CXCR4 
(393), and expression of this receptor is down-regulated by differentiation of 
these cells toward the osteoclast lineage (394,395). Treatment of the cell line 
RAW 264.7 with CXCL12 induced expression of MMP9, which may be a 
mechanism for the migration of precursor cells toward bone (393). In human 
osteoclast precursor cells, CXCL12 stimulated migration and enhanced 
osteoclastogenesis in response to RANKL and M-CSF (393,394). 
Expression of CXCL12 is up-regulated in osteoclasts when they differentiate 
on a calcium phosphate matrix (394). Production of CXCL12 may also be 
involved in the recruitment of precursor cells, which form giant cell tumors of 
bone (396), and in the increased osteolysis that is seen in multiple myeloma 
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(397). 

CCL2 (monocyte chemoattractant protein-1) is a potent chemokine for 
monocytes and a variety of other immune cells. Its receptor is CCR2, which 
is expressed at high levels on monocytes (398). In bone with an induced 
inflammatory lesion, CCL2 was expressed at high levels in osteoblasts (399). 
Induction of CCL2 in these lesions was mediated by proinflammatory 
cytokines (400). CCL2 also may be involved in tooth eruption because it is 
expressed by dental follicle cells (401,402,403). Among the factors that 
stimulate CCL2 in the dental follicle are PTHrP (404), platelet-derived growth 
factor-BB, and fibroblast growth factor-2 (405). However, CCL2 is not critical 
for tooth eruption because there were only minor changes in the temporal 
pattern of this process in CCL2-deficient mice (406). CCL2 is induced by 
RANKL in mononuclear precursor cells (407) and enhances OCL formation 
in these cells (408). However, cells induced by treatment of cultures with 
CCL2 alone, while multinucleated and calcitonin receptor positive, did not 
resorb bone unless they were also exposed to RANKL (408). Most recently, 
it was shown that treatment of osteoblasts with PTH increased CCL2 
expression and enhanced the fusion of preosteoclasts (409). 

M. Interleukin-10 

IL-10 is produced by activated T and B lymphocytes (410). It is a direct 
inhibitor of osteoclastogenesis (411,412) and osteoblastogenesis (413). This 
effect is associated with increased tyrosine phosphorylation of a variety of 
proteins in osteoclast precursor cells (414). The direct effects of IL-10 on 
RANKL-stimulated osteoclastogenesis are associated with decreases in 
NFATc1 expression and reduced translocation of this transcription factor into 
the nucleus (415) as well as suppressed c-Fos and c-Jun expression (416). 
Administration of IL-10 may have utility as a mechanism to control wear-
induced osteolysis (417). In the dental follicle cells, which function to regulate 
tooth eruption, treatment in vitro with IL-10 inhibited RANKL production and 
enhanced OPG (418). Hence, there appears to also be an indirect effect of 
IL-10 on osteoclastogenesis that is mediated by its ability to regulate RANKL 
and OPG production. 

Treatment of bone marrow cell cultures with IL-10 suppressed the production 
of osteoblastic proteins and prevented the onset of mineralization (413). IL-
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10 also inhibited the formation of OCL in bone marrow cultures without 
affecting macrophage formation or the resorptive activity of mature 
osteoclasts (419). This effect appears to involve the production of novel 
phosphotyrosine proteins in osteoclast precursor cells (414). IL-10 also 
stimulates a novel inducible nitric oxide synthase (376). 

4-1BB is an inducible T cell costimulatory molecule that interacts with 4-1BB 
ligand. Treatment of RANKL-stimulated osteoclast precursor cells in vitro 
with 4-1BB ligand enhanced IL-10 production. In addition, expression of IL-
10 was greater in RANKL-stimulated wild-type osteoclast precursor cell 
cultures than in cultured cells from 4-1BB-deficient mice (420). These results 
imply that some effects of IL-10 on osteoclasts may be mediated through 
interactions of 4-1BB with 4-1BB ligand. 

N. Interleukin-12 

IL-12 is a cytokine that is produced by myeloid and other cell types. It 
induces TH1 differentiation in T lymphocytes and the subsequent expression 
of IFN-γ (421). IL-12 has an inhibitory effect on osteoclastogenesis. 
However, the mechanism by which this effect occurs in vitro is controversial. 
Some authors have demonstrated direct inhibitory effects of IL-12 on RANKL-
stimulated osteoclastogenesis in purified primary osteoclast precursors and 
RAW 264.7 cells (422). This effect was associated with inhibition of the 
expression of NFATc1 in the osteoclast precursor cells. Interestingly, the 
inhibitory effects of IL-12 on osteoclastogenesis were absent in cells that 
were pretreated with RANKL (422). In contrast, others have found that the 
inhibitory effects of IL-12 on osteoclastogenesis are indirect. One group 
demonstrated that the inhibitory effects of IL-12 are mediated by T 
lymphocytes and do not involve production of IFN-γ (423). A second group 
disputes this result and found inhibition of osteoclastogenesis by IL-12 in 
cells from T lymphocyte depleted cultures and cells from T lymphocyte-
deficient nude mice (424). The latter authors also demonstrated that 
antibodies to IFN-γ blocked some of the inhibitory effect of IL-12 on RANKL-
stimulated osteoclast formation. 

O. Interleukin-15 

IL-15, like IL-7, is a member of the IL-2 superfamily and shares many 
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activities with IL-2 including the ability to stimulate lymphocytes. It has been 
shown to enhance osteoclast progenitor cell number in culture (425). 
Production of IL-15 by T lymphocytes has been linked to the increased 
osteoclastogenesis and bone destruction seen in the bone lesions of 
rheumatoid arthritis (426). 

P. Interleukin-17 and interleukin-23 

IL-17 is a family of related cytokines that are unique and contain at least six 
members (A–F) (427). IL-17E is also called IL-25 (428). These cytokines are 
central for the development of the adaptive immune response and the 
products of a subset of CD4 T lymphocytes with a unique cytokine 
expression profile, termed TH17. This is in contrast to the more established T 
lymphocyte cytokine-expressing subsets TH1 and TH2. 

IL-17A was initially identified as a stimulator of osteoclastogenesis in mixed 
cultures of mouse hematopoietic cells and osteoblasts (429). It stimulated 
osteoclastogenesis by inducing prostaglandin synthesis and RANKL. 
Production of IL-17A in rheumatoid arthritis appears involved in the 
production of activated osteoclasts and bone destruction in involved joints 
(429,430,431). Effects of IL-17 on osteoclastogenesis and bone resorption 
are enhanced by TNFα, which is also produced in the inflamed joints of 
patients with rheumatoid arthritis (432). Inhibition of IL-17A in an antigen-
induced arthritis model inhibited the joint and bone destruction that is 
typically seen and decreased production of RANKL, IL-1β, and TNFα in the 
involved lesions (433). 

IL-23 is an IL-12-related cytokine composed of one subunit of p40, which it 
shares with IL-12, and one subunit of p19, which is unique (434). It is critical 
for the differentiation of the TH17 subset of T lymphocytes along with TGFβ 
and IL-6 (435). IL-23 appears most important for expanding the population of 
TH17 T lymphocytes. This is a subset of T lymphocytes that produce RANKL 
and have a high osteoclastogenic potential that is mediated by their 
production of IL-17 (436). Using a LPS-induced model of inflammatory bone 
destruction, Sato et al. (436) found markedly decreased loss of bone in mice 
that were deficient in either IL-17 or IL-23. Hence, production of both IL-23 
and IL-17 is involved in the bone loss in this model. These authors also 
demonstrated IL-23 mRNA expression in the synovial tissue of involved 
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joints from patients with rheumatoid arthritis, which suggests that similar 
mechanisms are involved in the bone loss that occurs in this condition in 
humans. 

Q. Interleukin-18 

IL-18 is similar to IL-1 in its structure and is a member of the IL-1 superfamily 
(437). IL-18 synergizes with IL-12 to induce IFN-γ production (438), and its 
levels are increased at sites of inflammation such as rheumatoid arthritis 
(439). It is expressed by osteoblastic cells and inhibits osteoclast formation 
through a variety of mechanisms. These include its ability to stimulate GM-
CSF (100), which is produced by T cells in response to IL-18 treatment 
(440). It also stimulates IFN-γ production in vivo in bone (441), and its 
inhibitory effects on osteoclastogenesis and bone resorption are enhanced 
by cotreatment with IL-12 (442). Finally, it has been shown to increase 
production of OPG (443). In IL-18 overexpressing transgenic mice, 
osteoclasts were decreased; although, curiously, so was bone mass. These 
results indicate that there also may be effects of IL-18 on bone growth (441). 
Interestingly, IL-18 has been shown to indirectly stimulate 
osteoclastogenesis through its effects on T lymphocytes (444). IL-18 is also 
a mitogen for osteoblastic cells in vitro (445). 

R. Interferons 

IFN-γ is a type II IFN with a wide variety of biological activities. In vitro, IFN-γ 
has inhibitory actions on bone resorption (446,447). These appear to be 
direct and are mediated by its effects on osteoclast progenitor cells. IFN-γ 
inhibits the ability of 1,25-dihydroxyvitamin D3, PTH, and IL-1 to stimulate the 
formation of OCL in cultures of human bone marrow (448). IFN-γ also 
inhibits RANK signaling by accelerating the degradation of TRAF6 through 
activation of the ubiquitin/proteasome system (449); however, it does not 
directly inhibit resorption in mature osteoclasts (450). IFN-γ is also reported 
to have stimulatory effects on resorption through its ability to stimulate 
RANKL and TNFα production in T lymphocytes (451). It is an inhibitor of 
osteoblast proliferation (445,452,453) and has variable effects on osteoblast 
differentiation (452,454,455). 

The effects of IFN-γ on bone in vivo are variable because both inhibitory and 
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stimulatory effects have been reported. In mice with collagen-induced 
arthritis, loss of the IFN-γ receptor leads to increased bone destruction 
(456,457). Similarly, in mice that are injected with bacterial endotoxin over 
their calvaria, loss of IFN-γ receptor resulted in an enhanced resorptive 
response (449). 

In contrast in rats, ip injection of IFN-γ for 8 d induced osteopenia (458). In 
patients who have osteopetrosis, because they produce defective 
osteoclasts, administration of IFN-γ stimulated bone resorption and 
appeared to partially reverse the disease. The latter effects are possibly due 
to the ability of IFN-γ to stimulate osteoclast superoxide synthesis (459,460), 
osteoclast formation in vivo (461), or a generalized immune response (462). 

Type I IFNs (IFN-α and IFN-β) are typically produced in response to invading 
pathogens (463). Mice deficient in the IFN-α/β receptor component IFNAR1 
have a reduction in trabecular bone mass and an increase in osteoclasts 
(464). RANKL induces IFN-β in osteoclasts, and IFN-β, in turn, inhibits 
RANKL-mediated osteoclastogenesis by decreasing c-fos expression (464). 
IFN-α has also been shown to inhibit bone resorption in vitro although its 
mechanism of action is not as well studied as that of IFN-γ and -β (465). In 
vivo, IFN-α had no effect on bone turnover (466). 

S. Additional cytokines 

IL-4 and IL-13 are members of a group of locally acting factors that have 
been termed “inhibitory cytokines.” The effects of IL-4 and IL-13 seem 
related and appear to affect both osteoblasts and osteoclasts. Transgenic 
mice that overexpress IL-4 had a phenotype of osteoporosis (467). This 
effect may result from both an inhibition of osteoclast formation and activity 
(468,469) and an inhibition of bone formation (470). IL-13 and IL-4 inhibited 
IL-1-stimulated bone resorption by decreasing the production of 
prostaglandins and the activity of cyclooxygenase-2 (471). IL-4 and IL-13 
have also been demonstrated to induce cell migration (chemotaxis) in 
osteoblastic cells (472). IL-4 and IL-13 influence the ability of osteoblasts to 
regulate osteoclast formation and activity through their ability to increase 
OPG and inhibit RANKL production (473,474). The direct inhibitory actions of 
IL-4 on osteoclast precursor cell maturation into osteoclasts are stronger 
than that of IL-13 and involve effects on STAT6, NF-κB, peroxisome 
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proliferator-activated receptor γ1, MAPK signaling, Ca2+ signaling, NFATc1, 
and c-Fos (474,475,476,477,478,479). 

Macrophage migration inhibitory factor (MIF) was initially identified as an 
activity in conditioned medium from activated T lymphocytes that inhibited 
macrophage migration in capillary tube assays (480). Once purified and 
cloned (481), it became available for functional studies and was shown to 
have a variety of activities. In addition to T lymphocytes, it is produced by 
pituitary cells and activated macrophages. Mice that overexpress MIF 
globally were found to have high turnover osteoporosis (482). In contrast, 
MIF-deficient mice failed to lose bone mass or increase osteoblast or 
osteoclast number in bone with ovariectomy (483). Hence, MIF appears to 
be another mediator of the effects of estrogen withdrawal on bone. Estrogen 
down-regulates MIF expression in activated macrophages (484), and a 
similar response may occur in bone or bone marrow to mediate some of the 
effects of ovariectomy on bone mass. MIF is made by osteoblasts (485), and 
its production by these cells was up-regulated by a variety of growth factors 
including TGFβ, FGF-2, IGF-II, and fetal calf serum (486). In vitro, MIF 
increased MMP9 and MMP13 expression in osteoblasts (487) and inhibited 
RANKL-stimulated osteoclastogenesis (488). 

VIII. Regulation of Osteoblasts by Immune Cells and 
Cytokines 

A variety of cytokines are known to regulate osteoblastic cells. TNFα inhibits 
the differentiation of osteoblasts (489,490,491,492). IL-1, TNFα, and IFN-γ 
inhibits collagen synthesis in osteoblasts (452,455,493,494,495). IL-4 and IL-
13 suppress prostaglandin synthesis in bone and are reported to be 
chemoattractants for osteoblasts (471,472). IL-4 has been shown to act as a 
direct stimulator of proliferation and inhibitor of differentiation in an 
osteoblastic cell line (496). Similarly, IL-4-overexpressing mice exhibited a 
decrease in bone formation and decreased differentiated osteoblasts on their 
bone surface (467). The role of cytokines in osteoblast apoptosis has also 
been studied. TNFα is potently proapoptotic for osteoblasts (497), possibly 
through induction of the Fas-FasL system (498). Activated T lymphocytes 
also produce products that drive differentiation of human BMSC toward an 
osteoblastic phenotype (499). B7-H3 is an Ig superfamily member that is 
expressed on the surface of antigen-presenting cells. Recently, B7-H3 was 
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found to be expressed on developing osteoblasts, and its expression was 
increased during cell maturation (500). Furthermore, B7-H3-deficient mice 
had decreased cortical bone mineral density compared with littermate 
controls (500). 

IX. Role of Osteoclasts in Regulating Osteoblasts 

It is generally believed that, in addition to their bona fide function as 
mediators of bone resorption, osteoclasts can influence osteoblast 
differentiation and function through a process termed “coupling” 
(501,502,503,504). It has been postulated that, during remodeling of adult 
bone, bone formation occurs via the coupling process in response to bone 
resorption. Failure of such coupling was suggested to cause unbalanced 
bone remodeling, resulting in osteopetrosis or osteoporosis (502,503). In 
support of the coupling hypothesis, a variety of osteopetrotic mouse models 
with defective osteoclast formation or function demonstrate decreased bone 
formation. For example, c-Fos and RANKL-deficient mice, which lack 
osteoclasts, also have reduced bone formation although these mice have no 
known osteoblast-intrinsic defects (175,213). In addition to these genetically 
altered mice, clinical trials also support the concept of coupling. Humans who 
are treated with bisphosphonates to inhibit bone resorption in combination 
with daily PTH injections, which increase bone mass, have a diminished 
anabolic response to PTH compared with patients given daily PTH without 
bisphosphonates (505). One interpretation of these data is that anabolic 
regimens of PTH require osteoclasts (and the coupling factors produced by 
them) to increase bone formation. Not all osteopetrotic mice demonstrate 
altered bone formation. For example, blockade of chloride channel-7 
prevents bone resorption in ovariectomized rats, whereas bone formation in 
this rodent model is unaltered (506). In addition, mice lacking c-Src also 
show osteopetrosis with increased bone formation (507,508). However, 
interpretation of this model is more complicated because c-Src also has a 
role in osteoblasts and its absence causes increased osteoblast 
differentiation in vitro (509). 

Many of the correlative studies supporting the notion of coupling have 
previously been extensively reviewed (503,504). However, we know of no 
direct evidence supporting the hypothesis that osteoclasts per se trigger 
enhanced bone formation during remodeling. Thus, we would like to discuss 
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several outstanding issues that need to be clarified to validate our 
understand of coupling. For example, it is critical to clarify genetically 
whether coupling does indeed require bone resorption by mature osteoclasts 
and, hence, the release of byproducts from bone matrix (502,503). Although 
it cannot be mutually excluded, it is possible that coupling simply requires the 
presence of mature osteoclasts because their encoded gene products are 
sufficient to carry out the coupling mission. 

It is unknown whether coupling requires contact between osteoclasts and 
osteoblasts. Many soluble factors (e.g., IGF-I) have been implicated in the 
coupling process (502,503), but these hypotheses still require genetic 
confirmation. As mentioned above, a membrane-associated factor 
(EphrinB2), which is produced by osteoclast-lineage cells independent of 
their resorptive action, has been suggested to influence bone formation by 
osteoblasts (105). However, the question remains whether EphrinB2-
expressing mature osteoclast-lineage cells are the cells mediating the 
coupling of bone formation and resorption because the recruitment of bone-
forming cells occurs after resorption is completed. Along this line, it is 
necessary to first define, molecularly, the differentiation status of the 
tentatively identified osteoclasts and osteoblasts in the coupling process. For 
example, one may have to define what the differentiation state of osteoblast 
lineage cells that potentially interact with osteoclasts is. Are they bone matrix-
producing cells or RANKL-expressing cells? Conversely, it needs to be 
determined whether the osteoclasts that are involved in the coupling process 
are bone-resorbing multinucleated cells or osteoclast lineage cells that are 
committed but not necessarily fully differentiated. Our recent data show that 
an increased number of gene-mutated mononuclear osteoclasts can induce 
increased bone formation in vivo (510). This result suggests that even 
mononuclear osteoclast lineage cells can potentially interact with osteoblast 
lineage cells to regulate coupling. 

In summary, the coupling hypothesis needs further verification because it is 
of great importance both physiologically and clinically to identify the factor(s) 
involved in this phenomenon and, more importantly, to show whether 
osteoclasts do indeed influence bone formation during bone remodeling. 

X. Role of the Immune System in Bone Disease: the 
Birth of Osteoimmunology 
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Production of proinflammatory cytokines by immune cells and the 
subsequent induction of RANKL-mediated osteoclast formation and bone 
resorption have been linked to human diseases. Perhaps the most extensive 
studies have been on the role of cytokines in the development of the 
osteolytic lesions observed in rheumatoid arthritis and other inflammatory 
joint diseases (Fig. 3 ). 

RANKL expression on T lymphocytes is induced upon T cell receptor 
engagement and depends on Ca+2 mobilization (208,511). Initial experiments 
demonstrated that activated T lymphocytes, or even supernatants from 
activated T lymphocyte cultures, were capable of supporting 
osteoclastogenesis in vitro (512). It was subsequently observed that mice 
lacking CTLA4 (ctla4−/−), in which T lymphocytes are systemically activated, 
exhibit an osteoporotic phenotype associated with increased osteoclast 
numbers. Transfer of ctla4−/− T lymphocytes into rag2−/− mice, which lack 
lymphocytes, leads to decreased bone density over time, which can be 
prevented by OPG treatment. This finding indicated that activated T cells can 
disrupt bone homeostasis by modulating RANKL expression (512), although 
it is not clear whether T cell-derived RANKL per se is responsible for the 
aberrant bone metabolism in this model. In a complementary study, 
transgenic overexpression of RANKL restricted to T or T/B lymphocytes was 
sufficient to partially correct the osteopetrotic phenotype observed in RANKL-
deficient mice (213) (Y. Choi, unpublished data). Together these data 
definitively showed the ability of lymphocytes to regulate bone homeostasis 
in vivo through expression of RANKL and confirmed a bona fide interplay 
between the adaptive immune system and bone metabolism. 

In human arthritis, inflammation of the synovial joints is accompanied by 
bone and cartilage destruction. Various animal models have been 
established for the study of arthritis, and the role of RANKL in their 
pathogenesis has been investigated. Treating adjuvant-induced arthritis in 
Lewis rats with OPG had no discernible effect on inflammation but prevented 

Figure 3 
Regulation of osteoclastogenesis in inflammation. In inflammatory states such 
as inflammatory arthritis, local production of proinflammatory cytokines (IL-1, 
IL-6, and TNF) as well as RANKL by inflamed tissues such as the synovium 
leads to stimulation (more ...) 

�
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bone loss and cartilage destruction (512). These experiments could not 
resolve whether preservation of cartilage was an indirect benefit of inhibiting 
bone erosion or was due to independent mechanisms. A subsequent study 
demonstrated that bone loss and cartilage destruction were independent in 
an arthritis model induced by transfer of serum from K/BxN transgenic mice, 
where T cell activity is not required for the onset of disease (513). When 
K/BxN serum was transferred into RANKL-deficient mice, inflammation and 
cartilage destruction were comparable to control recipients, but bone erosion 
was greatly reduced (513). These findings reinforced the notion that RANKL 
per se mediates induction of bone destruction by osteoclasts in animal 
models of autoimmune arthritis. Examination of the cellular constituents of 
synovial fluid, collected from human arthritis patients, revealed that all local T 
lymphocytes expressed RANKL, establishing the clinical relevance of the 
connection between arthritis and immunologically derived RANKL (512). 
Recently, it has been demonstrated that RANKL, in combination with M-CSF, 
can induce transdifferentiation of immature dendritic cells to the osteoclast 
lineage and that this process is significantly enhanced by rheumatoid arthritis 
synovial fluid, potentially identifying another mechanism for disease-related 
bone destruction (27). 

Periodontitis, induced by infection with various subgingival bacteria, is a 
major cause of tooth loss and is associated with increased risk for heart 
failure and stroke (514,515). To examine the etiology of the disease, 
peripheral blood leukocytes from patients with localized juvenile periodontitis 
were transferred into rag2−/− mice, which were then orally inoculated with the 
Gram-negative bacterium Actinobacillus actinomycetemcomitans (515). 
Localized juvenile periodontitis was recapitulated in the recipient animals and 
was accompanied by accumulation of osteoclasts at the alveolar sockets 
(515). It was demonstrated that treatment with OPG inhibited the osteoclast 
infiltration and bone damage (515). In vitro stimulation of peripheral blood 
lymphocytes showed that RANKL was induced on CD4+ T lymphocytes that 
were activated with A. actinomycetemcomitans antigens and that disease 
was attenuated when the same cells were specifically depleted from 
recipient mice (515). This study demonstrated the importance of CD4+ T 
lymphocytes in the pathogenesis of periodontitis, specifically with regard to 
disease-related bone destruction. 

Bone loss has long been recognized as an extraintestinal complication of 
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inflammatory bowel disorders, like Crohn’s disease and ulcerative colitis 
(516). One recent study found that patients with these diseases have 
elevated levels of serum OPG, which derive from the site of inflammation, 
and inversely correlate with severity of bone loss (517), whereas another 
study found that Crohn’s disease patients have elevated levels of both OPG 
and soluble RANKL (518). Mechanistic insight into this link is provided by a 
study demonstrating that OPG treatment of mice suffering from IL-2 
deficiency-induced ulcerative colitis results not only in reduced osteopenia, 
but also mitigation of colitis due to reduced colonic dendritic cell survival 
(519). 

In addition to arthritis, periodontal disease, and inflammatory bowel 
disorders, pathological bone loss is observed in patients suffering from other 
autoimmune diseases (diabetes mellitus and lupus erythematosus), chronic 
viral infections (HIV), allergic diseases (asthma), and metastatic breast and 
lung cancers (520,521,522). The contribution to pathogeneses by 
osteoimmunological factors merits further investigation and may provide 
viable therapeutic options for alleviating painful sequella associated with a 
variety of conditions. 

Although autoimmunity is, in some cases, associated with bone loss, all T 
cell responses do not necessarily have such a deleterious outcome. T Cells 
also secrete cytokines, like IFN-γ, IL-4, and TGFβ, that have been shown to 
inhibit the proosteoclastogenic effects of RANKL (520,521,523). In particular, 
the role of the TH1 cytokine, IFN-γ, appears to be crucial in preventing T 
lymphocyte-mediated osteoclastogenesis (449). TGFβ is characterized as 
both an osteotropic and immunosuppressive cytokine. Although the largest 
repository of latent TGFβ is in bone, its role in osteoclast formation is 
complex and insufficiently understood (168). TGFβ down-modulates RANKL 
expression in osteoblasts, thereby negatively impacting their ability to 
mediate osteoclastogenesis in culture (524). However, TGFβ has also been 
shown to potentiate RANKL expression in activated T lymphocytes (208) and 
enhance osteoclastogenesis in cultures supplemented with soluble RANKL 
(524). Additional studies will be necessary to determine whether TGFβ 
utilizes multiple regulatory mechanisms, and if so, what disparate purposes 
they might serve. If most of the cytokines produced by activated T cells are 
antiosteoclastogenic, the question becomes how T cells induce bone loss by 
activating osteoclasts in, for example, inflammatory joints. The answer is 
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recently provided by the discovery of TH17 cells (Fig. 3 ), which produce IL-
17 and have been shown to be critical mediators of many inflammatory 
autoimmune diseases such as multiple sclerosis or rheumatoid arthritis 
(525). TH17 cells do not produce large amounts of IFN-γ or IL-4 that are 
antiosteoclastogenic, rather they produce IL-17 (525). Recent data show that 
IL-17-producing TH17 cells can induce monocytes to become osteoclasts via 
RANKL. In addition, IL-17 can further increase the level of RANKL in stromal 
cells, thereby enhancing overall osteoclastogenesis in the pathogenic joint 
(436). Given the variety of T lymphocyte-associated cytokines with 
osteotropic function, it will also be useful to clarify the correlation between 
TH1/TH2/TH17 cytokine polarization and any attendant osteoimmunological 
bone destruction. 

XI. Role of Immune Cells in Estrogen-Withdrawal-
Induced Bone Loss 

Estrogen withdrawal after menopause is associated with a rapid and 
sustained increase in the rate at which bone is lost. This phenomenon 
seems to result from an increase in bone resorption that is not met by an 
equivalent increase in bone formation. Production of cytokines is likely 
involved because in mice deficient in the receptor for IL-1 (526), TNFα (527), 
and IL-6 (528), estrogen withdrawal induced by ovariectomy did not cause 
bone loss. Production of IL-1 (529), IL-1 receptor (530), TNFα (531), M-CSF 
(532), IL-6, and IL-6 receptor (533,534,535) is regulated by estrogen in bone 
or hematopoietic cells, which may link cytokines to estrogen withdrawal-
induced bone loss. Production of IL-7 has also been linked to the bone loss 
that occurs with estrogen deficiency (359). However, this result is 
controversial because trabecular bone loss after ovariectomy was found to 
be similar in wild-type and IL-7-deficient mice (364). Responses of osteoclast 
precursor cells to RANKL are inhibited by estrogen, and this effect is 
mediated, in part, by a down-regulation of JNK activation in these cells 
(536,537). 

T cells have also been proposed to influence the rapid bone loss that occurs 
after acute estrogen deficiency. This response was postulated to be 
mediated by enhanced TNFα production (528,538). In a series of 
experiments involving ovariectomy (OVX)-induced bone loss in mice, an 
animal model for postmenopausal bone disease, it was reported that nude 

�
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mice, which lack T lymphocytes, did not lose bone mass after OVX. This 
result suggested that T cells are critical for this response (528,538). 
However, this hypothesis is controversial because similar experiments using 
nude rats (539) and nude RAG2- or TCR-α-deficient mice (all of which lack 
functional T lymphocytes) demonstrated that OVX-induced trabecular bone 
loss in these models was equivalent to that seen in wild-type mice (540). 
Curiously, loss of cortical bone with OVX was different between T cell-
deficient and wild-type models and dependent on the bone that was 
examined (540). These results suggest that there may be compartmental 
and bone-specific effects of T cell depletion on OVX-induced bone loss. 
Additional experiments will be required to determine how T cells are involved 
in this response of bone. These studies will likely require mutant mouse 
models that are deficient in specific immunoregulatory molecules to 
mechanistically examine the causes of OVX-induced bone loss. 

Partially purified populations of B lymphocytes from murine bone marrow are 
reported to form osteoclasts in vitro when they were treated with M-CSF and 
RANKL (44,46,48,541). In addition, production of osteoclastogenic activity in 
these populations was increased after ovariectomy. However, when isolated 
to very high purity, purified B lymphocytes failed to differentiate into 
osteoclasts in vitro (24). These results demonstrate that the osteoclastogenic 
potential of B lymphocyte populations in murine bone marrow is dependent 
on contaminating cells. Most recently, we and others have found that 
trabecular bone loss after ovariectomy was similar in wild-type mice and 
mice that were deficient in the majority of their B lymphocytes (364,540,542). 

XII. Modulation of Immunity by the RANKL-RANK-OPG 
Axis 

The significance of RANKL-RANK-OPG signaling in regulating the immune 
system continues to emerge. Initial studies of RANKL- and RANK-deficient 
mice demonstrated the importance of these signals for secondary lymphoid 
organ development because these animals display a lack of peripheral 
lymph nodes and abnormalities in B cell follicle formation and marginal zone 
integrity in the spleen (171,199). In this section, however, we will focus on 
the role that RANKL-RANK plays in shaping the immune response in the 
adult immune system. 
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To date, most reported data indicate that RANKL modulates immunity 
through dendritic cells. Dendritic cells are the most potent professional 
antigen-presenting cells and are required to initiate T cell-mediated immunity 
in vivo (543). Dendritic cells differentiate from the hematopoietic 
monocyte/macrophage progenitor cell lineage and, as close relatives of 
osteoclasts, can be generated in vitro by treating a common precursor cell 
with GM-CSF. Such treatment has been shown to suppress c-Fos and Fra-1 
(26,544), which are key transcription factors for osteoclast differentiation. 
These results highlight a mechanism of developmental divergence between 
these two cell types. Upon receipt of inflammatory or activating stimuli, 
dendritic cells home to the T cell areas of the lymph nodes to activate 
antigen-specific T cells. Productive activation relies on numerous dendritic 
cell-specific factors, including alteration of the chemokine receptor repertoire, 
up-regulation of costimulatory molecules, and cytokine production. These 
modifications are induced by exogenous inflammatory stimuli, as well as 
signals transmitted by the TNF family members TNFα and CD40L. 

RANKL signaling has also been implicated in dendritic cell function, 
particularly with regard to regulation of dendritic cell survival. Activated 
dendritic cells are relatively short-lived cells, with a half-life as low as 1–2 d 
upon arrival in the lymph node (545), yet in situ imaging studies suggest that 
individual T dendritic cell couplings may last 37 h or longer (546,547,548). 
RANKL-prolonged dendritic cell survival is attributed to up-regulation of the 
antiapoptotic protein Bcl-xL (549), through a pathway requiring the NF-κB 
components p50 and c-Rel (550). Treatment of dendritic cells with RANKL 
also activates the antiapoptotic serine/threonine kinase, Akt/PKB, through 
recruitment of PI3K by TRAF6 and Cbl-b to RANK, in a mechanism 
dependent on the kinase activity of c-Src (201,551). RANKL-prolonged 
dendritic cell survival also has in vivo relevance because pretreatment of 
peptide-pulsed dendritic cells with RANKL before sc injection into recipient 
mice results in significantly elevated dendritic cell persistence in draining 
lymph nodes and enhanced Th-1 cytokine production and T cell memory 
formation (552). Dendritic cell vectors intended for use in immunotherapy 
have been shown to persist longer when pretreated with RANKL (553), and 
enforced autocrine RANKL-RANK, but not CD40L-CD40, signaling on 
dendritic cells has been shown to enhance antitumor immunity (554). Opg−/− 
dendritic cells potentiate in vitro mixed lymphocyte reactions, despite CD86, 

Page 51 of 105Osteoimmunology: Interactions of the Bone and Immune System

3/17/2010http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2528852/?tool=pmcentrez



MHCII, and antigen presentation levels identical to syngeneic opg+/− dendritic 
cells (555). 

Blockade of RANKL signaling in vivo results in a slightly reduced CD4+ T cell 
response to lymphocytic choriomeningitis virus infection, although the 
response is severely inhibited in the absence of CD40 signaling (556). These 
experiments highlight the requirement for TNF family member signaling in 
the generation of antiviral immunity, as well as the degree to which the 
functions of RANK-RANKL and CD40-CD40L interactions overlap. However, 
physiological signaling through RANK is more limited in scope than CD40, in 
that treatment of immature dendritic cells with RANKL cannot initiate 
activation, and RANKL signaling does not complement the cd40−/− defect in 
germinal center formation and B cell affinity maturation (549,555). This 
disconnect is likely not explained by intrinsic signaling differences because 
RANK and CD40 activate the same set of signaling cascades, but instead by 
differential expression patterns and kinetics. For example, on T cells CD40L 
is rapidly and transiently expressed and is limited only to the CD4+ T cell 
subset (557). In contrast, RANKL is expressed on both CD4+ and CD8+ T 
cells (552) and is capable of binding both its functional (RANK) and decoy 
(OPG) receptors. These interactions are also likely to succeed CD40-CD40L 
signaling because CD40L is a key inducer of RANK and OPG expression by 
dendritic cells (181). The physiological role of CD40-CD40L vs. RANK-
RANKL signaling in dendritic cell function may, therefore, depend on the 
phase of the immune response. CD40-CD40L signaling may be more 
prominent during the initiation and effector phases, when many cellular 
components of the immune system are strongly activated. By contrast, 
RANK-RANKL signaling may be more important during the waning phases, 
to ensure that T memory formation is established, and then to wind down 
remaining T dendritic cell interactions, possibly through OPG interference 
with RANKL signaling. The severe phenotype of RANKL and RANK-deficient 
mice has thus far not allowed a thorough examination of the role of RANKL 
in memory T cell formation. 

Evidence also suggests that RANKL may be important for survival of 
interstitial dendritic cells engaged in antigen surveillance during the interim 
period separating immune responses. Human CD34+ immature dendritic 
cells have been shown to express both RANK and RANKL and are therefore 
capable of providing an autocrine survival signal. Peripheral maturation of 
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these dendritic cells leads to a down-regulation of RANKL, suggesting a 
requirement for an independent source of RANKL to validate dendritic cell 
activation (558). 

RANKL may also be involved in actively inducing tolerance. RANKL 
signaling has been directly implicated in the induction of oral tolerance in 
mice. Feeding low-dose ovalbumin to mice concomitant with iv RANKL 
treatment produced T cells that were refractory to rechallenge and correlates 
with in vitro production of the suppressive cytokine IL-10 by mucosal 
dendritic cells (559). Another study has demonstrated that RANKL-mediated 
signaling is required to prevent the onset of autoimmune disease in a TNFα-
inducible mouse model of diabetes and that blockade of RANKL-RANK 
interactions parallel a diminution of CD4+CD25+ regulatory lymphocytes, 
which are necessary to prevent cytotoxic T lymphocyte-mediated islet cell 
destruction (560). In a recent study of murine cardiac allograft tolerance, 
RANKL-RANK signaling was shown to be important for the generation of 
regulatory T cells via intratracheal delivery of alloantigen (561). It remains 
unclear, however, whether RANKL directly triggers T lymphocyte 
suppression or, alternatively, acts through dendritic cell intermediaries. 
RANKL has also been shown to be induced preferentially among key 
costimulatory molecules on T cells activated by tolerogenic dendritic cells 
(562). In addition to systemic action of RANKL, a recent report suggests a 
potential role of RANKL-RANK interactions in UV-induced 
immunosuppression in the skin. In the study, Loser et al. showed that UV-
activated keratinocytes, by expressing RANKL, activated nearby Langerhans 
cells, which in turn preferentially expanded regulatory T cells (563). 

In addition to modulating T cell tolerance via dendritic cells, RANKL may 
mediate its action during thymic selection. Although earlier studies using 
RANKL or RANK null mice did not reveal any significant defect in thymocyte 
development, recent studies nonetheless indicate that the RANKL-RANK 
interaction and its signaling molecule TRAF6 are required for the 
development of autoimmune regulator (AIRE)-expressing medullary thymic 
epithelial cells (564,565). AIRE-expressing medullary thymic epithelial cells 
play a critical role in preventing autoimmune diseases by expressing tissue-
restricted antigens and thus deleting potentially self-reactive thymocytes 
during development (566,567,568). Whether the RANKL-RANK interaction is 
continuously required for the maintenance of AIRE-positive thymic epithelia 
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cells during adult life is an important question because interference with this 
pathway may limit the therapeutic use of anti-RANKL blockers to treat 
various chronic bone diseases like osteoporosis. Further studies are 
necessary to yield molecular insights into the generation and maintenance of 
T lymphocyte tolerance that critically requires the interaction of RANKL-
RANK. 

Study of the role of RANKL-RANK-OPG signaling in the immune system 
continues to emerge, although progress is slower than that produced by the 
extensive analysis of this pathway in bone (169,206). Future studies will 
provide more insight into how much the RANKL axis controls immune 
responses during normal homeostasis, infection, or inflammatory challenges. 
The outcome of these studies will have a major impact on the feasibility of 
using anti-RANKL therapy to treat chronic diseases of bone such as 
osteoporosis. 

XIII. Toll-Like Receptors, Inflammation, and 
Osteoimmunology 

Toll-like receptors (TLRs) are members of an ancient receptor family that 
share homology with IL-1R and are critical activators of the innate immune 
response (569). They are most highly expressed on antigen-presenting cells 
like dendritic cells, macrophages, and B cells, but some members are 
expressed on a diverse array of tissues. Ligation of these receptors by 
conserved microbial molecules or endogenous “danger” factors results in the 
up-regulation of costimulatory molecules and the elaboration of inflammatory 
cytokines in preparation for an adaptive immune response. TLR signaling is 
mediated by the adapters MyD88, TRAF6, and TRIF, which activate various 
downstream signaling pathways, including inhibitory κB kinase-NF-κB, 
MAPK, and IFN regulatory factor-1 (569). 

Because macrophages and dendritic cells share a common progenitor with 
osteoclasts, it is not surprising that TLR expression is also detected on bone 
cells (74,570,571). Direct signaling of various TLRs (including TLR4) on 
osteoclast precursors inhibits RANKL-mediated osteoclastogenesis (74). The 
data that microbial products inhibit osteoclast differentiation via TLRs is 
counterintuitive because bacterial infection can cause inflammatory bone 
diseases such as periodontitis, osteomyelitis, and bacterial arthritis (572). 

Page 54 of 105Osteoimmunology: Interactions of the Bone and Immune System

3/17/2010http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2528852/?tool=pmcentrez



Bone mineral density is reduced in such diseases because of excessive 
bone resorption by osteoclasts. In addition, LPS has been suggested to be a 
potent stimulator of bone loss by causing an increase in the number of 
osteoclasts in mice. Moreover, TLR activation can enhance osteoblast-
mediated osteoclast differentiation by inducing RANKL and TNFα on 
osteoblasts (570,571,573). Our recent data suggest that TLR inhibits RANKL-
induced osteoclast differentiation in part by inducing the expression of type I 
IFNs. IFN-β receptor-deficient monocytes are resistant to TLR-mediated 
suppression during RANKL-induced osteoclast differentiation (Y. Choi, 
unpublished data). A negative feedback regulatory mechanism via type I IFN 
has been previously described (464). Activation of the fos gene by RANKL 
leads to up-regulation of IFN-β, which mediates a feedback mechanism 
blocking further c-Fos-dependent activity (464). As such, it was shown that 
mice deficient for the IFN-α/β receptor (IFNAR1) suffer from an osteoporotic 
phenotype that is characterized by an increase in osteoclasts (464). 
Promoter characterization showed that RANKL-mediated up-regulation of 
IFN-β utilizes activator protein-1 binding sites, and that c-fos-deficient 
osteoclast precursors are incapable of inducing IFN-β production (464). To 
facilitate osteoclast development, therefore, osteoclast precursors need to 
up-regulate the cytokine signaling regulator suppressors of cytokine 
signaling 3 to inhibit IFN-mediated suppression (483,574,575). Additional 
studies are needed to determine whether type 1 IFN production or its action 
is different when osteoblast lineage cells are present with osteoclast 
precursors during bacterial infection. 

The basis for the apparent discrepancy between TLR stimulation as a potent 
negative regulator of osteoclastogenesis and the association of bacterial 
infection with excessive bone resorption by osteoclasts remains unclear. As 
described earlier, alveolar bone destruction in periodontitis caused by 
infection of Gram-negative bacteria is mediated by enhanced 
osteoclastogenesis, which results in T cell activation and subsequent up-
regulation of RANKL (515). In the same study, bacterial infection of severe 
combined immunodeficient mice did not lead to significant levels of alveolar 
bone loss. This result implies that bacterial products do not have a direct role 
in osteoclastogenesis because severe combined immunodeficiency mice 
have no known defect in osteoclast precursors or osteoblasts (515). 
Therefore, it is likely that bone loss associated with bacterial infection may 
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be an indirect outcome of exacerbated T cell responses. 

Similar to macrophages or dendritic cells, osteoclast precursors also produce 
proinflammatory cytokines, such as TNFα, in response to various TLR 
ligands (74). Moreover, whereas TLR stimulation inhibits osteoclast 
differentiation, osteoclast precursors treated with TLR ligands still retain high 
levels of phagocytic activity, which is a major host-defense mechanism for 
the clearance of bacterial infection. Therefore, the net outcome of TLR 
stimulation in osteoclast precursors is likely the enhancement of immune 
responses toward achieving bacterial clearance. This enhancement of 
immune responses can be achieved by promoting cytokine production from 
precursor cells and by inhibiting their differentiation into nonphagocytic, 
nonimmune cells, such as mature osteoclasts. Thus, interaction of these 
microbial products with TLRs on osteoclast precursors appears to favor the 
role of osteoclast precursors as part of the proinflammatory system by 
inhibiting their differentiation into mature osteoclasts and promoting the 
production of inflammatory cytokines. However, because these cells can 
differentiate into mature osteoclasts if TLR ligands are removed (74), it 
appears that after a microbial infection is cleared the presence of residual 
activated T cells can lead to the differentiation of phagocytic precursors into 
mature, bone-resorbing osteoclasts. In addition, TNFα produced by 
osteoclast precursors upon TLR stimulation can enhance osteoclastic bone 
resorption. 

Conversely, the RANKL axis may regulate the inflammatory action of TLR 
stimulation. For example, a recent report suggests that LPS-induced 
production of proinflammatory cytokines via TLR4 was reduced in OPG-
deficient mice, whereas it was increased in RANKL null mice, which 
demonstrated increased lethality after LPS injection. Moreover, if mice were 
pretreated with RANKL, they were somewhat protected from LPS-induced 
death (576). These results suggest that RANKL may suppress cytokine 
responsiveness to LPS (or other TLR ligands) in vivo. 

TLRs are thus likely to regulate the balance of immune responses and bone 
metabolism during acute attacks of vertebrate hosts by various microbes. 
However, physiological in vivo stimulation of TLRs, which are expressed on 
various cells, may result in different effects on bone metabolism depending 
on the nature of the given immune responses. In addition, ongoing 
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stimulation of TLRs by commensal bacteria might affect bone metabolism. In 
support of this idea, recent data show that mice deficient in mediators of the 
TLR/IL-1R signaling pathway (MyD88 or IL-1 receptor-associated kinase-M) 
exhibit an altered bone metabolism, although it is not clear whether the 
defects are due to the signals from TLRs or IL-1R (283,577). 
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