Response of Linear Systems to Random Signals

Properties of Random Signals

· Introduction: Since random signals are defined in terms of probability, one way to characterize a random signal is to analyze the long-term observation of the process. The following analysis assumes the (weakly) stationary/ergodic property.

· The four basic properties of random signals:

· Autocorrelation function – A measure of the degree of randomness of a signal.

· Cross-correlation function – A measure of correlation between two signals.

· Autospectral density function – A measure of the frequency distribution of a signal.

· Cross-spectral density function – A measure of the frequency distribution of one signal (output) due to another signal (input).

· Correlation functions: 

· Autocorrelation function: The autocorrelation function Rxx(t) of a random signal X(t) is a measure of how well the future values of X(t) can be predicted based on past measurements. It contains no phase information of the signal.
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· Cross-correlation function: The cross-correlation function Rxy(t) is a measure of how well the future values of one signal can be predicted based on past measurements of another signal. 
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· Properties of correlations functions:

· Rxx(-t) = Rxx(t)     (even function)

· Rxy(-t) = Ryx(t)
· Rxx(0) = (x2  + ( x2  = mean square value of x(t)
· Rxx(() = ( x2  
· The cross-correlation inequality: 
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· Example: 

· Rxx(t) of a sine wave process:
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Since the envelop of the autocorrelation function is constant as (((, we can conclude that any future values of a sine wave process can be accurately predicted based on past measurements.

· A time-delay system:






[image: image6.wmf][

]

)

(

)

(

)]

(

)

(

[

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)]

(

)

(

[

)

(

)

(

)

(

)

(

0

0

0

0

0

t

t

t

t

t

t

t

t

t

t

t

t

nn

xx

yy

xx

xy

mean

xy

xy

R

R

t

y

t

y

E

R

t

R

R

t

t

x

t

x

E

t

n

t

t

x

t

x

E

R

t

y

t

x

E

R

t

n

t

t

x

t

y

+

=

+

=

-

=

Þ

-

+

=

ú

ú

û

ù

ê

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

+

+

-

+

=

Þ

+

=

+

-

=

=

3

2

1


· Spectral density functions: 

· Autospectral density function (autospectrum): The autospectral density function Sxx(f) of a random signal X(t) is a measure of its frequency distribution. It is the Fourier transform of the autocorrelation function.
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· Cross-spectral density function (cross-spectrum): The cross-spectral density function Sxy(f) is a measure of the portion of the frequency distribution of one signal that is a result of another signal. It is the Fourier transform of the cross-correlation function.
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· Symmetry: Sxx(-f) = Sxx(f) (even function)   Sxy(-f) = Sxy*(f) = Syx(f)   

· Example: 

· White noise: The autocorrelation function of a white noise process is an impulse function. The implication here is that white noise is totally unpredictable since its autocorrelation function decays to zero at t > 0. Of course, this is what we expect to see in a white noise process, a random process with infinite energy.

· Low-pass white noise: Assuming the low-pass white noise has a magnitude of 1 and the bandwidth will vary. The autocorrelation function is computed using IFFT. 
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· The autocorrelation function of a low-pass white noise process is a sinc [sin(x)/x] function. The implication here is that the predictability of a low-pass white noise process is inversely proportional to the bandwidth of the noise. Since the noise energy is proportional to the bandwidth, this conclusion is consistent with common sense.

· Band-pass white noise: Assuming the band-pass white noise has a magnitude of 1 and the bandwidth will vary. The autocorrelation function is computed using IFFT.
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· The autocorrelation function of a band-pass white noise process has the similar property – the predictability is inversely proportional to the bandwidth of the noise. In addition, the autocorrelation function approaches the sine wave process as the bandwidth decreases, a conclusion that can easily be drawn using LTI system theory for deterministic systems. 

LTI Systems

· Introduction: LTI systems are analyzed using the correlation/spectral technique. The inputs are assumed to be stationary/ergodic random with mean = 0.  

· Ideal system:
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· Ideal model:

· Correlation and spectral relationships:
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Total output noise energy: 
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· Example: LPF to white noise
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One-sided spectrum: G(f) = 2 S(f) for f ( 0

· Example: LPF to a sine process
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· Models uncorrelated input and output noise: Gmn(f) = Gum(f) = Gvn(f) = 0
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