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Modeling bivariate longitudinal diagnostic
outcome data in the absence of a gold standard
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Diagnostic screening involves testing humans or animals
for the presence of disease or infection. For some diseases, a
perfect, “gold-standard” test does not exist or is too invasive
or expensive to use. Hence, the goals of diagnostic testing
may include: quantifying the performance of an imperfect
test, diagnosing subjects, and estimating disease prevalence
– possibly in the absence of a perfect reference test. To date,
most work in this area has focused on cross-sectional data.
We extend recent work by developing a model for bivari-
ate longitudinal diagnostic outcomes in the no-gold stan-
dard case. We consider the situation where a continuous
test and a binary test are repeatedly administered to each
subject. For infected subjects, we assume the existence of a
changepoint corresponding to time of infection and posit ap-
propriate changes to the model thereafter. This results in a
varying-dimensional parameter space since the true infection
status of the subjects is unknown. We make inference using
Bayesian Markov chain Monte Carlo methods, incorporating
the Reversible Jump Markov chain Monte Carlo algorithm
of Green for posterior simulation from a varying-dimensional
parameter space. We test the model’s performance on sim-
ulated data, and then analyze a data set based on Johne’s
disease in cattle.

Keywords and phrases: Changepoint model, Gibbs sam-
pler, Johne’s disease, Longitudinal data, Markov chain
Monte Carlo, No-gold standard, Reversible Jump.

1. INTRODUCTION

Over the past few decades, considerable progress has been
made in the area of diagnostic screening for disease. Methods
now exist to handle no-gold standard data, relax assump-
tions about normality of diagnostic outcomes, and handle
dependence among screening tests. Historically, work has
focused on cross-sectional data, with important early work
by Hui and Walter (1980) and Gastwirth (1987), which es-
tablished the capability to make inferences about diagnostic
test accuracy in the absence of a gold standard. Recent work
explores models for longitudinal screening data. In this pa-
per, we extend screening models to handle bivariate longi-
tudinal screening data with one continuous and one binary
response, in the absence of a gold-standard.
∗Corresponding author.

Early work in this area focused on the construction of
models for subjects who were known to have a disease of
interest. In some studies, the date of onset of the disease
was known, whereas in others the date of onset was only
known to have occurred in some, possibly large, window
of time. These studies involved a longitudinal collection of
continuous outcomes. Typical models posit subject-specific
trajectories varying about a population-average trajectory.
Trajectories are often assumed to be piecewise linear with
a subject-specific changepoint that is related to disease pro-
gression. Applications of this type of model to the study
of HIV and dementia can be found in Lange, Carlin and
Gelfand (1992) and Hall, Ying, Kuo and Lipton (2003), re-
spectively.

Later work extended these longitudinal models to the
case where disease status was unknown, either for all or a
portion of the subjects. These models often incorporate la-
tent disease indicator variables, and allow for different para-
metric forms for the subject-specific trajectories conditional
on disease status. Examples of this type of model can be
found in Pauler and Laird (2000) and Skates, Pauler and
Jacobs (2001).

Less work has been done in the area of joint modeling
of longitudinal diagnostic outcomes. One exception is the
work of Cook, Ng, and Meade (2000) who consider the sit-
uation where multiple, possibly dependent binary tests are
administered to each subject at each observation time. They
consider the balanced case, propose modeling the underly-
ing latent disease process using a hidden Markov model,
and use maximum likelihood estimation. More recently, En-
gel, Backer and Buist (2009) proposed a Bayesian model for
multiple binary tests applied longitudinally in the no-gold
standard case. They employed Markov Chain Monte Carlo
techniques to make inference.

Here, we develop a joint model for longitudinal diagnos-
tic screening data. In particular, we jointly model contin-
uous and binary outcomes over time with no gold stan-
dard. Our model accommodates irregular and missing data.
This model will be useful for diagnosing infection in in-
dividual subjects, assessing the performance of diagnostic
tests, understanding the progression of antibody response,
and studying the temporal dynamics of infection within a
population. An important feature of our model is that it al-
lows us to estimate sensitivity of a dichotomized version of
the continuous outcome as a function of time. Extensions to
multiple tests are conceptually straightforward.
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We work in the Bayesian framework and use Markov
Chain Monte Carlo (MCMC) methods to make inferences.
In addition, because (i) we work in the no-gold standard
case where the true disease status of each subject is un-
known and must be estimated along with the parameters
and (ii) the number of parameters in the model varies, de-
pending on the unknown true disease status, we incorpo-
rate the Reversible Jump MCMC (RJMCMC) algorithm of
Green (1995). Green’s algorithm is well-suited for Bayesian
model selection problems which lead to varying-dimensional
parameter spaces such as this one. We use RJMCMC in
a manner similar to Pauler and Laird (2000) and Skates,
Pauler and Jacobs (2001).

The motivating dataset for this paper consists of joint
longitudinal screening data for Johne’s disease (JD) in cat-
tle. Johne’s disease is a chronic bacterial infection caused
by Mycobacterium avium subspp paratuberculosis (Map),
which can cause diarrhea, weight loss and reduced milk pro-
duction. However, these signs may not manifest themselves
for months to years after infection, if at all. Early diagnosis
in this asymptomatic phase is desirable since infected cows
may pass the infection on to herdmates whether or not they
are exhibiting signs of infection.

Our data consist of records from 10 dairy herds known
to be infected with JD. Data were collected from 1984-2003,
and tests were performed about every six months. There
was, however, substantial deviation from this testing sched-
ule with one-fourth of inter-test times below 4 months and
one-fourth above 8.3 months. Herd size ranged from 50 to
160 milking cows (median = 60). Three hundred, sixty-five
cows from this study were included in our analysis; the num-
ber of observations for each cow ranged from 2 to 23 with a
median of 6. At each screening time, both fecal culture and
serum ELISA tests were done, although for various reasons
either of these may be missing on a given test date. Fecal
culture test results were categorized as positive if at least
one Map colony was visible on the culture medium and neg-
ative otherwise. ELISA tests measure the antibody concen-
tration on a continuous scale through the Optical Density
(OD). Plots for data from four cows are shown in Fig. 1.

The remainder of this paper is organized as follows: Sec-
tion 2 gives background for the Johne’s disease data, Sec-
tion 3 describes the proposed model, Section 4 covers in-
ference, Section 5 gives model extensions, Section 6 gives
simulation results, Section 7 contains an analysis of the
Johne’s disease data, and Section 8 contains concluding re-
marks.

2. BACKGROUND

Figure 1 indicates that there is a clear difference in the
behavior of the fecal and serology outcomes depending on
whether the cow is infected or not. Additionally, the serol-
ogy response takes 10–17 months to develop (Lepper et al.,

Figure 1. Plots of serology and fecal culture data by cow.
Cows 82 and 182 are infected; cows 52 and 208 are

uninfected. F = fecal culture (binary), S = log of serology
score (OD).

Figure 2. Upper graph is infection without serologic reaction;
lower is infection with serologic reaction. (ti1, ti2, . . . , timi) is

the vector of screening times for cow i. t∗i is the time of
infection and dobi is the date of birth of the ith cow.

1989), a time period we refer to as the “lag.” Due to the
lag, a cow that becomes infected “close” to the last screen-
ing time will fail to exhibit a serology response during the
screening window (see Fig. 2). Thus, considering the entire
screening window, the behavior of a cow’s data will depend
on the latent infection state:

• “no infection” – no infection has occurred from the date
of birth to the last screening, no changes in either fecal
or serology behavior

• “infection without serologic reaction” – infection occurs
prior to cow’s last screening date but serology scores
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do not exhibit a rise during screening window, change
occurs in fecal behavior but not serology

• “infection with serologic reaction” – indicates the cow
has been infected and had a serologic reaction within
the screening window, change occurs in fecal and serol-
ogy behavior

Figure 2 depicts the relationship between infection time, last
screening time and lag for the “infection without serologic
reaction” and “infection with serologic reaction” cases. We
will define a different model for each of these latent states.
Changepoints will be included to model changes in the fecal
and serology behavior.

Technically, the length of time between infection and
serologic response, or lag, will vary from subject to subject,
but concentrate about some “average” value (Lassauzet,
Johnson and Thurmond, 1989). Our model, however, will
assume a common lag across subjects.

Further, we make some assumptions about indepen-
dence of fecal and serology outcomes. For cows in the “no-
infection” state, we assume the fecal culture and serology
vectors are independent. This assumption seems reasonable
since fecal and serologic tests have different biological bases
that, presumably, only become correlated when the cow con-
tracts JD. For cows in either of the two infection states, we
assume the existence of an unknown cow-specific infection
time, denoted t∗i . We further assume the fecal and serology
vectors are conditionally independent given this infection
time. This assumption implies that the correlation between
a cow’s serology and fecal culture results at any particu-
lar screening time is due primarily to the progression of
the infection. One would expect animals infected for a con-
siderable length of time to tend to have jointly “positive”
outcomes and animals not infected to tend to have jointly
“negative” outcomes. This assumption may be too simplis-
tic for situations where (i) it is thought that cows will have
differing rates of overall response to infection and (ii) this
cow-specific response rate affects both the serology and fe-
cal outcomes. In such cases, the latent intensity model de-
veloped by Dendukuri and Joseph (2001), which correlates
two concurrent tests on a subject through a random subject
effect, might be more suitable. We present some empirical
evidence for the conditional independence assumption for
the JD data in Section 7.1.

3. THE MODEL

In this section, we give notation and formally define a
model for joint longitudinal diagnostic outcomes. Actually,
we define three models, one corresponding to each latent in-
fection state. Since we make inference in the Bayesian frame-
work, we also specify priors. Also, the number of parameters
varies across infection states so we specify three sets of pri-
ors, one for each latent state.

3.1 Models by latent infection state

We propose the following hierarchical models, which
allow cow-specific serology trajectories to vary around a
population-average serology trajectory. The serology trajec-
tory is assumed to be “flat” when a cow is not having a
serologic reaction and increasing with a cow-specific positive
slope starting from a “changepoint” that occurs one lag af-
ter infection. We assume actual serology measurements are
subject to random error about the cow-specific trajectory
and model them as independent and identically distributed
(iid) normal.

In reality, serology scores tend to be skewed, so they were
log transformed to make the normality assumption reason-
able. Additionally, serology scores are expected to increase
once a reaction starts so we constrain the slope of the serol-
ogy trajectory after the changepoint to be positive by mod-
eling the log-slope as normal.

In order to specify the models, we need the notion of sen-
sitivity and specificity of a binary diagnostic test. The sensi-
tivity is the probability that a diseased subject tests positive
whereas the specificity is the probability a non-diseased sub-
ject tests negative. Perfect binary tests will have sensitivity
and specificity both equal to 1.

We now define the following quantities: tij = time of
the j th screening for the ith subject, i = 1, 2, . . . , n and
j = 1, 2, . . . ,mi; (Sij , Fij) = the serology and fecal cul-
ture outcomes of the ith subject at time tij ; ki = infec-
tion status indicator, ki ∈ {1, 2, 3}; (q1, q2, q3) = proba-
bility ki = 1, 2, 3, respectively; SeF = sensitivity of fecal
culture; SpF = specificity of fecal culture; lag = time inter-
val between infection and serology reaction; Θ = vector of
all model parameters; and U = vector of all model latents.
The parameter and latent vectors will be given explicitly fol-
lowing the model definition. Also, we parameterize normal
distributions with the mean and precision, where precision
is the reciprocal of variance and is often denoted by τ with a
subscript. This parameterization facilitates the MCMC cal-
culations.

We first consider the model for a cow in the no infec-
tion state, which we denote as ki = 1. We use the gen-
eral notation X ∼ Bernoulli(p) to denote a random vari-
able X that assumes the value 1 with probability p and the
value 0 with probability 1 − p. For the ith subject at time
tij ,

Sij |Θ, U, ki = 1 ∼ β0i + εij , ⊥(1)
Fij |Θ, U, ki = 1 ∼ Bernoulli(1 − SpF )

where β0i
⊥∼ N(β0, τβ0), εij

⊥∼ N(0, τe), and β0i ⊥ εij ∀i, j.

We use the notation Xi
⊥∼ F to indicate that the ran-

dom variables, Xi, are independent and identically dis-
tributed according to F . Here, no change in the behavior
of the data is anticipated. Hence, the serology trajectory is
flat and no changepoints are included in the model. Next
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Figure 3. Serology trajectory with data for cow with ki = 3.

consider ki = 2 (infection without serology reaction). We
have

Sij |Θ, U, ki = 2 ∼ β0i + εij , ⊥
Fij |Θ, U, ki = 2 ∼ Bernoulli(πij)

where πij = I(tij ≥ t∗i )SeF + I(tij < t∗i )(1 − SpF ),

β0i
⊥∼ N(β0, τβ0), εij

⊥∼ N(0, τe), and β0i ⊥ εij ∀i, j. The
only difference from the ki = 1 model is that the proba-
bility of a positive fecal culture changes from 1 − SpF to
SeF at the changepoint t∗i . We continue to assume that Sij

and Fij are conditionally independent given all parameters
and latents. Finally, with ki = 3 (infection with serology
reaction),

Sij |Θ, U, ki = 3 ∼ β0i + β1i(tij − t∗i − lag)+ + εij , ⊥
Fij |Θ, U, ki = 3 ∼ Bernoulli(πij)

where β0i and εij are distributed as in the previous cases,

log β1i = γi
⊥∼ N(μγ , τγ) and the notation z+ = z if z > 0, 0

otherwise. We also assume that β1i, β0i and εij are pairwise
independent for all i and j. Also, Sij and Fij are condi-
tionally independent given all parameters and latents. Note
that the term containing β1i is zero until tij = t∗i + lag,
at which point we will see a “kink” in the trajectory. More
specifically, the serology trajectory will be flat until t∗i +lag,
at which point it will begin to increase linearly. Figure 3
shows a graph of the serology trajectory for a cow with
ki = 3.

In any of the latent infection states, we can think of β0i

as cow i’s baseline, or disease-free, serology score (without
measurement error) so it is reasonable to model these as iid
from a common distribution across all three latent infection
states.

3.2 Prior specification

We consider parameters as either “global” or “cow-
specific.” Global parameters are parameters such as τe that
apply across all cow-level models. “Cow-specific” parameters
are specific to an individual cow’s model and, consequently,
are subscripted with i. One example is cow i’s infection time,
t∗i . Since we work in a Bayesian framework, we now specify

priors. Because the parameter space changes from model to
model, we have slightly different prior specifications for each
sub-model. For instance, the infection with serology reaction
state, ki = 3, requires that t∗i ≤ timi−lag, whereas the infec-
tion with no serology reaction requires timi−lag < t∗i ≤ timi .
Hence, the priors on t∗i need to be specified separately for
these two models.

Letting ql = P (ki = l) for l = 1, 2, 3, the priors for global
parameters are

(q1, q2, q3) ∼ Dirichlet(ζ1, ζ2, ζ3)
SeF ∼ Beta(aseF

, bseF
)

SpF ∼ Beta(aspF
, bspF

)
lag ∼ U(minl, maxl)
β0 ∼ N(μβ0 , b)
τβ0 ∼ Γ(aβ0 , bβ0)
μγ ∼ N(aμγ , bμγ )
τγ ∼ Γ(aτγ , bτγ )
τe ∼ Γ(aτe , bτe)

where minl and maxl are reasonable lower and upper bounds
on the lag. Infection times under infection state 2 are mod-
eled as

(2) t∗i |ki = 2, lag ∼ U [timi − lag, timi ]

Under latent infection state 3, the prior for infection times
is

(3) t∗i |ki = 3, lag ∼ U [dobi, timi − lag]

In situations where a disease is well-studied and a good
deal is known about the diagnostic tests, we can strengthen
our analysis by incorporating this information into the
model through informative priors. The construction of these
priors involve eliciting information from an expert. We ex-
plain how this would be accomplished for the fecal culture
sensitivity.

To elicit a prior for SeF , we would obtain the expert’s
most likely, or modal, value and (α × 100)th percentile
for SeF . α is typically taken to be 0.95 but may be any
value that is easy for the expert to think about. Now
we can easily obtain the parameters of the beta prior,
(aseF

, bseF
), conforming to the elicited mode and 95th

percentile using software called “BetaBuster” available at
http://www.epi.ucdavis.edu/diagnostictests/.

4. INFERENCE

We work in a Bayesian framework so our interest is in
the joint posterior probability density function (pdf) of
the parameters and latents given the data. In this sec-
tion, we derive this posterior distribution, which we ap-
proximate by sampling from it using Markov Chain Monte
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Carlo (MCMC) techniques. Inference for all parameters and
functionals of interest are obtained from this sample. The
sampling scheme is based on a Gibbs sampler which incor-
porates Metropolis, slice and reversible jump steps (Green,
1995). Details of the MCMC sampling scheme, including
the full conditionals necessary for the Gibbs sampler, the
methods for sampling these full conditionals, and the Re-
versible Jump Markov Chain Monte Carlo (RJMCMC)
steps used to sample the posterior, are detailed in the Ap-
pendix.

Reversible jump MCMC is a tool for sampling varying-
dimensional parameter spaces. We require it because we
work in the no gold-standard case where the latent infec-
tion state is unknown. Consequently, the latent infection
states will be sampled in our Markov chain and will po-
tentially change from iteration to iteration. Since the latent
infection state defines the sub-model for each cow and these
sub-models have varying-dimensional vectors of parameters
and latents (for model 1, 2, and 3, these vectors are (β0i),
(β0i, t∗i ), and (β0i, β1i, t∗i ), respectively), the number of pa-
rameters we sample at each iteration may change. Hence, we
require a mechanism for sampling varying-dimensional pa-
rameter spaces like RJMCMC. Note that RJMCMC allows
us to perform model selection at the individual cow level
and estimate model parameters simultaneously. Hence, our
inferences and predictions will reflect the uncertainty asso-
ciated with model selection.

4.1 Posterior distribution

We now specify the augmented data likelihood of this
model and then use it to derive the posterior distribution. To
economize on notation, we set data = {(Sij , Fij), tij ∀i, j}.
Note that, if a log transform is used for the serology data,
Sij actually represents the log of the serology score. The la-
tents, denoted by U , include {β0i : i = 1, 2, . . . , n}

⋃
{β1i :

i such that ki = 3}
⋃
{ki : i = 1, 2, . . . , n}, while the param-

eters, denoted by Θ include q1, q2, q3, β0, τβ0 , τe, seF , spF ,
lag, μγ , τγ and {t∗i : i = 1, 2, . . . , n}. We have

(4)

L(Θ|U, data) = f(data|U, Θ) · f(U |Θ) ∝{ ∏
i:ki=1

[
q1

mi∏
j=1

τ
1
2

e exp{−τe

2
(Sij − β0i)

2}

× Sp
1−Fij

F (1 − SpF )Fij

]
τ

1
2

β0
exp{−τβ0

2
(β0i − β0)

2}
}

×
{ ∏

i:ki=2

[
q2

mi∏
j=1

τ
1
2

e exp{−τe

2
(Sij − β0i)

2}
]

×
∏

j:tij<t∗
i

[
Sp

1−Fij

F (1 − SpF )Fij

]

×
∏

j:tij≥t∗
i

[
Se

Fij

F (1 − SeF )1−Fij

]

× τ
1
2

β0
exp{−τβ0

2
(β0i − β0)

2}
}

×
{ ∏

i:ki=3

[
q3

mi∏
j=1

τ
1
2

e exp{−τe

2
(Sij − β0i

− β1i(tij − t∗i − lag)+)2}
] ∏

j:tij<t∗
i

[
Sp

1−Fij

F (1 − SpF )Fij

]

×
∏

j:tij≥t∗
i

[
Se

Fij

F (1 − SeF )1−Fij

]
× τ

1
2

β0

× exp{−τβ0

2
(β0i − β0)

2} τ
1
2

γ

β1i
exp{−τγ

2
(logβ1i − μγ)2}

}

Lines 2–3 represent the augmented data likelihood for sub-
jects having no infection (ki = 1), the next four lines corre-
spond to subjects having infection without serology reaction
(ki = 2), and the final four lines correspond to subjects hav-
ing infection with serology reaction (ki = 3).

Thus, the joint “posterior” pdf is proportional to the
product of the augmented data likelihood times the prior:

(5)

p(Θ, U |data) ∝
L(Θ|U, data) · π(q1, q2, q3, β0, τβ0 , τe, seF , spF , lag, μγ , τγ)

×
∏

i:ki=2

π2(t
∗
i ) ·

∏
i:ki=3

π3i(t
∗
i )

where π2(t∗i ) = I(timi − lag < t∗i ≤ timi)/lag, the prior
for t∗i under model 2 and π3i(t∗i ) = I(dobi ≤ t∗i ≤ timi −
lag)/(timi − lag − dobi), the prior for t∗i under model 3.

The MCMC sampling scheme described in the Appendix
converges because the posterior distribution is invariant un-
der each step in the Gibbs sampler and the chain is irre-
ducible and aperiodic under the entire procedure (Tierney,
1994).

5. MODEL EXTENSIONS

This section describes how the basic model can be ex-
tended to include a quadratic serology trajectory or covari-
ates related to (q1, q2, q3), the probabilities of being in each
latent disease state.

5.1 Quadratic serology trajectory

Modeling the serology trajectory with an increasing lin-
ear trend makes sense for a chronic, slowly progressing dis-
ease like Johne’s disease. However, such a model may be
too restrictive for other diseases or even for Johne’s if data
are collected over a longer period of time. This is because
the serology response will eventually level off and may even
decline after a period of leveling. Modeling the serology tra-
jectory as a quadratic would address such behavior. We can
accomplish this by modifying the current model and poste-
rior sampling scheme.

We need to be careful to constrain the quadratic so that
it models serology behavior in a manner that makes biolog-
ical sense. For example, to model an increase in antibodies
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followed by a leveling and decrease, we need the quadratic
function to be concave down with a maximum occurring af-
ter t∗i + lag. A serology trajectory that is concave upward
would mean that antibody production declines after infec-
tion (+lag), which is biological nonsense.

A formulation that addresses these biological constraints
has β1i > 0 and β2i < 0 in the following model 3 serology
component

Sij |Θ, U, ki = 3 ∼ β0i + β1i(tij − t∗i − lag)+

+ β2i((tij − t∗i − lag)+)2 + εij

where (
log β1i

log(−β2i)

)
=

(
γi,
νi

)
∼ N

((
γ
ν

)
, Δ

)
,

β0i
⊥∼ N(β0, τβ0), and εij

⊥∼ N(0, τe). We assume (β1i, β2i) ⊥
β0i ⊥ εij ∀i, j.

If more complicated trajectories were anticipated, other,
more flexible, forms such as penalized splines could be used
(cf. Lang and Brezger, 2004). Additional flexibility could
be incorporated by modeling both the trajectory and the
distribution of cow-specific intercepts nonparametrically as
described in Li, Lin and Müller (2009).

5.2 Latent disease state covariates

If covariates are thought to be related to the probability
of being in latent states 1, 2 and 3, they can be incorpo-
rated into the model using two “nested” binary regressions.
One obvious covariate might be age or some other proxy for
length of time exposed to the infectious agent. It would seem
reasonable that longer exposure would increase the chance
of infection and the chance of progressing to latent state 3.
The vector of probabilities of being in latent states 1, 2 and
3, (q1, q2, q3), would be replaced by the set {(q1i, q2i, q3i) :
i = 1, 2, . . . , n}, which contains a vector of probabilities for
each cow. Letting Xi be the vector of covariates for cow
i, we use a probit model to related them to (q1i, q2i, q3i).
Specifically, we set Pr(ki = 1) = q1i = Φ(XT

i ω). We model
the probability of being in latent state 2, conditional on not
being in latent state 1, by defining q̃2i = q2i

1−q1i
and set-

ting q̃2i = Φ(XT
i ν). We then have that q2i = (1 − q1i)q̃2i

and q3i = 1 − q1i − q2i. The computational approach taken
by Albert and Chib (1993) would simplify the Monte Carlo
sampling. Of course, any cumulative distribution function
could be used as the link function in the binary regression.
This approach generalizes the one taken by Branscum et al.
(2008). Finally, suitable priors for the regression coefficients
can be formulated as in Bedrick et al. (1996), together with
modifications to the MCMC scheme.

6. SIMULATION STUDY

We investigated the model’s performance using a simu-
lation study. The simulation consisted of data for 100 sub-
jects with 37, 14, and 49 subjects in latent disease states 1, 2,

Table 1. Means and 95% probability intervals for simulated
data

Para- Truth Post. Post. Lower Upper
meter Mean Median Limit Limit

β0 0.08 0.075 0.075 0.059 0.091
τβ0 2000 1323 1116 421 3417
τe 20 20.7 20.7 19.0 22.5
μγ 0.40 0.44 0.44 0.37 0.51
τγ 25 28.8 27.6 14.5 49.7
SeF 0.60 0.59 0.59 0.54 0.64
SpF 0.99 0.985 0.986 0.970 0.996
lag 1.00 0.93 0.93 0.86 0.99
q1 0.37 0.38 0.38 0.28 0.49
q2 0.14 0.13 0.13 0.05 0.22
q3 0.49 0.49 0.49 0.39 0.59

Table 2. Classification accuracy for simulated data

Classification
1 2 3

1 37 0 0
True State 2 2 10 2

3 1 2 46

and 3, respectively. The simulated data were unbalanced but
complete. Screening occurred semi-annually. The number of
observations per subject has median = 11, minimum = 4,
and maximum = 31. We generated data using parame-
ter values similar in magnitude to those estimated for the
Johne’s disease data and used diffuse proper priors. The R
language (R Development Core Team, 2005) was used for
simulating and analyzing data.

History plots indicated that two chains with dispersed
initial values converged to the same distribution quickly, i.e.
after a few thousand iterations. We used a burn-in of 5,000
iterations and based inference on the subsequent 45,000 iter-
ations from both chains. The posterior means, medians and
95% probability intervals are shown in Table 1 along with
the actual values used to simulate the data.

Trajectories fit to the serology data using the posterior
means of β0i, β1i and t∗i were quite accurate due to the large
number of repeated observations on each cow. Observed val-
ues are shown along with fitted trajectories for 3 infected
subjects in Fig. 4.

Using a 0-1 loss function, subjects were classified into the
latent state with the highest posterior probability. Classifi-
cation was quite accurate, with only 7 out of 100 subjects
placed incorrectly as summarized in Table 2. Alternately,
if we are only interested in which animals are infected or
not infected, we can collapse latent states 2 and 3 into a
single “infected” state and obtain an overall sensitivity and
specificity for the joint model of 60/63 and 37/37, respec-
tively.

For serology tests, classification of subjects as diseased or
non-diseased is typically based on a dichotomized score; sub-
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Figure 4. Plots of fitted serology trajectory and data by cow.
All cows shown are infected. F = fecal culture, 2 if negative
and 4 if positive, S = observed serology score. Solid vertical
black line is estimated infection time, dash-dot vertical line is

estimated serology reaction time.

jects with serology scores above a specified cutoff, denoted c,
are classified as diseased while those below are classified as
non-diseased. This dichotomization permits the calculation
of the sensitivity and specificity of the serology test. Because
the concentration of antibodies in an infected subject will
rise over time (once the lag has elapsed), the serology sensi-
tivity will be a function of time. Additionally, since subjects
have their own baseline serology level and slope, sensitivity
at a fixed time after infection will vary among subjects. The
overall sensitivity at a fixed time after infection, t, can thus
be estimated by “averaging” over the relevant posterior dis-
tributions using the following integral with Si(t) represent-
ing subject i’s serology score t units of time after infection.

ŝec(t)
= Pr(Si(t) > c|data)
= E[Pr(Si(t) > c|data, Θ)]
= E[E{I(Si(t) > c)|data, Θ}]

=
∫

I(Si(t) > c)f(U |Θ)f(Θ|data)dUdΘ

=
∫

I(β0i + β1i(t − lag)+ + εij > c)f(β0i|β0, τβ0)

· f(β1i|μγ , τγ)f(εij |τe)f(β0, τβ0 , μγ , τγ , τe, lag|data)
· d(β0i, β1i, εij , β0, τβ0 , μγ , τγ , τe, lag)

Figure 5. ROC curves for selected values of time past
infection.

Since this integral is difficult to evaluate analytically, we
obtain a Monte Carlo approximation from our chain as fol-
lows. For z = 1, 2, . . . ,MC , we sample β

(z)
0 , τ

(z)
β0

, μ
(z)
γ , τ

(z)
γ ,

and τ
(z)
e . For each fixed value of z and for l = 1, 2, . . . , w,

we sample β
(l,z)
0i ∼ N(β(z)

0 , τ
(z)
β0

), log β
(l,z)
1i ∼ N(μ(z)

γ , τ
(z)
γ ),

and ε
(l,z)
ij ∼ N(0, τ

(z)
e ). We estimate the sensitivity at time

t after infection and cutoff, c, as

ŝec(t)
.=

1
MC

MC∑
z=1

{ 1
w

w∑
l=1

I(β(l,z)
0i + β

(l,z)
1i (t − lag(z))+

+ ε
(l,z)
ij > c)

}
Similar reasoning can be used to obtain a Monte Carlo esti-
mator of the specificity corresponding to cutoff c, ŝpc. Then,
if we fix t and vary the cutoff, c, we obtain a set of points,
(1− ŝpc, ŝec(t)). The curve generated by these points is the
estimated receiver-operating characteristic (ROC) curve at
time past infection t. By varying t over a grid of values,
we obtain a family of ROC curves as shown in Fig. 5. Such
a graph can give insight into how the performance of the
serology test changes with time past infection.

7. ANALYSIS OF JOHNE’S DISEASE DATA

We now model the Johne’s disease data for 365 cows de-
scribed in the introduction. While the data were collected
from ten herds, since we fit random effects for each cow in
the data, we did not believe it necessary to include random
effects for herds. We comment on this again at the end of
this section.
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Table 3. Parameter estimates for Johne’s disease data

95% Probability
Interval

Parameter Post. Mean Lower Upper

β0 −1.745 −1.754 −1.737
σβ0 0.052 0.045 0.063
τe 64.1 59.7 68.7
μγ 0.09 −0.24 0.38
τγ 0.67 0.41 1.03
SeF 0.62 0.57 0.67
SpF 0.985 0.973 0.993
q1 0.46 0.39 0.53
q2 0.25 0.18 0.31
q3 0.29 0.24 0.35

We elicited priors for the sensitivity and specificity of the
fecal culture from the third author (IG). Based on his exten-
sive experience with the fecal test for Johne’s disease, he be-
lieved that the most likely value for the sensitivity was 0.60
(Collins et al., 2006). In addition, he was 95 percent sure the
sensitivity was above 0.40. This resulted in a Beta(10.9,7.6)
prior for sensitivity. For fecal culture specificity, the prior
was centered on 0.999 and had 5th percentile equal to 0.99,
yielding a Beta(364.9,1.36) prior. The prior on μγ , the mean
of the log slopes, was N(0, precision = 0.1), which is rather
diffuse, putting about 68% of the prior probability for the
median of the untransformed slopes between e−3 ≈ 0.04 and
e3 ≈ 24. All other priors were likewise diffuse.

Unfortunately, we experienced poor mixing in both sim-
ulations and data analysis. This is due to the high correla-
tion among the lag, latent disease indicators and infection
times. Consequently, we used a fixed lag based on the work
of Lepper et al. (1989). Their study of experimentally in-
fected calves indicated that positive serum antibody ELISA
responses occur 10–17 months after infection. Thus, we fixed
the lag at 1 year and performed a sensitivity analysis to see if
inference differed substantially for lags of 10 or 17 months.
In the future, we hope to remedy this mixing problem as
the lag is an important and often unknown parameter that
diagnosticians would be interested in estimating, especially
for new diseases and serology tests. We mention an exten-
sion of this model which posits cow-specific lags in lieu of a
common lag for all cows. In addition to being more realis-
tic biologically, such a model has the potential to solve this
mixing problem because it reduces the correlation among
the lag and other parameters.

A log transformation was applied to serology scores to
make the normality assumption reasonable. We then ran
two chains with different initial values for 50,000 iterations.
They converged to the same posterior distribution after a
few thousand iterations and mixed well. Discarding the first
5,000 iterations of each chain, we obtained the parameter
estimates shown in Table 3 from the last 45,000 iterations
of both chains.

Figure 6. Fitted trajectories with data. F = fecal culture, 2 if
negative and 4 if positive; S = transformed serology score.

Solid vertical line is estimated infection time, dash-dot
vertical line is estimated serology reaction time.

Cow-specific fitted trajectories can be obtained using the
posterior means of β0i, β1i and t∗i . Fitted trajectories for
two cows known to be infected at necropsy are plotted in
Fig. 6.

Estimated ROC curves over a grid of time past infection
values are shown in Fig. 7.

7.1 Empirical investigation of the
conditional independence assumption

We now consider the empirical evidence for the assump-
tion that serology and fecal outcomes on the same cow are
conditionally independent given all parameters and latents.
We first consider the case for uninfected cows. Actually, we
consider the broader set of test outcomes corresponding to
any time when a cow was uninfected. Because it is easier
to investigate the dependence between two univariate ran-
dom variables (as opposed to two random vectors), we re-
move the dependency between repeated serology measure-
ments on the same cow by considering the predicted resid-
ual, ε̂ij = Sij − β̂0i. Then, the ordered pairs (ε̂ij , Fij) are
independent for all i and j. We can now focus on the rela-
tionship between the serology residuals and fecal outcomes.
Since we work in the no-gold standard case, we use the pos-
terior mean to estimate t∗i so we can identify data corre-
sponding to pre-infection test times. Based on 1,443 pairs of
data, we calculate a Pearson correlation coefficient of 0.0073
(asymptotic P-value = 0.78), which is quite strong support
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Figure 7. ROC curves for selected values of time past
infection.

for the assumption of conditional independence when the
test outcomes are from uninfected cows.

Next, we consider the possibility of correlation between
concurrent serology and fecal outcomes for infected cows at
times after infection. We again consider the predicted resid-
ual and fecal outcome pairs, i.e. (ε̂ij = Sij − β̂0i − β̂1i(tij −
t̂∗i − lag)+, Fij). There are 342 such pairs having a Pearson
correlation coefficient of −0.10 (asymptotic P-value = 0.07).
The 95% confidence interval estimate of the correlation co-
efficient is (−0.200, 0.01). Hence, the evidence against con-
ditional independence is not particularly strong, and, even
if the serology residuals and fecal outcomes are correlated,
the correlation is rather weak.

7.2 Sensitivity analysis

We performed a sensitivity analysis to determine the ef-
fect of assuming that lag is 1 year by analyzing the data
assuming that lag is 10 months and 17 months, the lower
and upper bounds given by Lepper et al. Table 4 compares
the posterior means of the parameters for the different lags.
The differences are not substantial in view of the 95% prob-
ability intervals in Table 3.

One possible explanation for the decline in estimated fe-
cal culture sensitivity as lag increases has to do with the
fact that it is easier to detect the time of serology reaction,
t∗i +lag, than the time of infection, t∗i when τe is large and the
fecal culture sensitivity is low. In this case, there is a lot more
certainty in the estimation of the time of serology reaction
because the linear trend is easy to detect and extrapolate
whereas there is large uncertainty in the infection time be-
cause false negatives are quite likely to occur. A larger value
for the fixed lag, therefore, will not change the estimated

Table 4. Posterior means of global parameters for different
values of lag time since infection

Lag in months
10 12 17

β0 −1.746 −1.745 −1.743
σβ0 0.052 0.052 0.057
τe 64.4 64.1 62.4
μγ −0.01 0.09 0.26
τγ 0.59 0.67 0.91
SeF 0.64 0.62 0.58
SpF 0.984 0.985 0.986
q1 0.47 0.46 0.46
q2 0.23 0.25 0.27
q3 0.30 0.29 0.27

serology reaction time much, but will shift the estimated in-
fection time toward lower values, resulting in the inclusion
of earlier screening times in the infection-prior-to-serology-
reaction window. If the lag is overestimated, the subject
will be incorrectly classified as “infected” at some of these
early screening times. Moreover, at screening times when
animals are actually uninfected, the probability of a posi-
tive test is 1 − SpF , which is typically quite low. Thus, the
estimated sensitivity will be diminished by negative screen-
ing outcomes corresponding to screening times at which the
subject is incorrectly considered to be infected.

For 15 of the 365 cows, classification by latent disease
status varied, depending on the assumed value of lag. How-
ever, only 6 cows actually changed between infected (status
2 or 3) and noninfected status. The remaining 9 switched
from state 2 (infection without serology reaction) at a 17-
month lag to latent state 3 (infection with serology reac-
tion) at a 10-month lag. The switch between states 2 and
3 makes sense for a cow whose infection time has a high
posterior probability of being within 10 to 17 months of
the last screening and who has few/no observations in this
time frame. Then, an “infection without serology reaction”
model under a 17-month lag would fit nearly as well as “an
infection with serology reaction” model under a 10-month
lag, provided the slope in the latter model is close to zero.
Removal of these near-zero slopes under the 17-month lag
explains why μγ , the mean of the log-slopes, increases as the
lag increases.

To assess sensitivity to priors, the analysis was rerun with
the following diffuse priors: SeF ∼ Uniform[0, 1], SpF ∼
Uniform[0, 1], and μγ ∼ N(0, precision = 0.01). As shown
in Table 5, these changes had a negligible effect on the es-
timates. The biggest differences were for the estimates of
SpF and μγ . The point estimate of SpF declined by 0.01
and the interval widened slightly while the point and in-
terval estimates of μγ all shifted to slightly higher values.
The robustness of our analysis to prior assumptions is due
to the large overall sample size and high probabilities across
all three latent infection states. With a smaller overall sam-
ple size or low probability for some of the latent states, the
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Table 5. Parameter estimates for Johne’s disease data: diffuse
priors

95% Probability
Interval

Parameter Post. Mean Lower Upper

β0 −1.745 −1.753 −1.737
σβ0 0.052 0.045 0.062
τe 64.3 60.0 68.7
μγ 0.16 −0.13 0.44
τγ 0.77 0.48 1.15
SeF 0.63 0.58 0.68
SpF 0.97 0.95 0.99
q1 0.49 0.41 0.56
q2 0.23 0.17 0.30
q3 0.28 0.23 0.34

priors could have a substantial impact on parameter estima-
tion. As for classification by latent disease status, six cows
changed from “infected” states (2 or 3) under informative
priors to the noninfected state under diffuse priors. These
cows had at least one positive fecal test and tended to have
posterior probability spread quite evenly across two or three
states rather than having very high posterior probability in
one latent state. Thus, it seems that the informative prior
for fecal culture specificity was enough to tip the balance for
these six cows in favor of classification in an infected latent
state.

Finally, we investigated our assumption that random herd
effects were not necessary. After running our analysis, we
calculated the average random effect among cows within
each herd and compared averages across herds. We found
minuscule differences in these averages, giving further con-
fidence that our selected model is appropriate.

8. CONCLUDING REMARKS

We have developed a Bayesian model for jointly dis-
tributed longitudinal diagnostic test outcome data in the
absence of a gold standard. The method was shown to work
well using simulated data and it was illustrated using real
data with expert elicited prior information. Sensitivity anal-
ysis showed results to be minimally dependent on the prior
for the sample sizes considered.

Diagnosticians have long depended on cross-sectional
data to obtain information about the sensitivity of tests
based on dichotomized outcomes. This results in obtaining
estimated sensitivity across units whose times from infection
are generally quite variable. The actual sensitivity being es-
timated is a weighted average of sensitivities of the form∫

sec(t)w(t)dt, where w(t) is the density of infected indi-
viduals in the population sampled that have been infected
for t units of time. Our work provides, to our knowledge, a
first attempt to provide a method of ascertaining how the
sensitivity might increase with time since infection.

Of course, we made several assumptions in our model de-
velopment. Although we were able to estimate the lag in our
simulation, we had to assume the lag was known based on
previous information in the data analysis. We also assumed
a very regular distribution for the slopes associated with in-
fected units when in fact there may be clusters of units that
have smaller slopes while other clusters have larger slopes. In
biological terms, some animals/persons may be more reac-
tive than others to infection. We assumed that binary test
outcome, fecal culture, had a constant sensitivity through
time after infection. There may be other strictly binary tests
for which the sensitivity increases with time as is the case for
the ELISA. In fact, fecal cultures are often given as scores
ranging from 0, 1, . . . ,M ; the larger the score, the greater
the indication of infection. This creates even more possibil-
ities for modeling. While we did not address these issues in
this first attempt at handling this fundamentally difficult
problem, we are currently attempting to do just that.

APPENDIX A. POSTERIOR SIMULATION

We now detail the Markov Chain Monte Carlo Methods
used to simulate from the posterior distribution. We use a
Gibbs sampler (Gelfand and Smith, 1990; Geman and Ge-
man, 1984) that incorporates reversible jump steps. Most
of the full conditionals have recognizable forms and can
be sampled directly; we use Metropolis (Metropolis, Rosen-
bluth, Rosenbluth, Teller and Teller, 1953; Hastings, 1970)
and slice sampling (Neal, 1997) for the rest. Robert and
Casella (2004) catalog these and other popular MCMC tech-
niques in their text. A tutorial on reversible jump MCMC
(RJMCMC) can be found in Waagepetersen and Sorensen
(2001).

Using the notations χ(ki) to represent the vector of cow-
specific parameters associated with cow i under model ki

and [ω|else] to represent the distribution of the parameter or
vector of parameters, ω, given all other parameters and the
data, one sweep of the Gibbs sampler includes the following
steps:

1. For each i, the joint full conditional, [(ki, χ
(ki))|else], is

sampled. This step updates the model indicator and all
corresponding parameters for cow i. We use RJMCMC
for this step since changes to the model indicator result
in changes to the parameter space. The reversible jump
algorithm requires a proposal for ki plus proposals for
the parameters corresponding to model ki, i.e. the χ(ki);
the entire lot is then accepted or rejected. Consequently,
the sub-model parameters, χ(ki), for subject i are also
updated if a between-model move is accepted in this
step.

2. Given the current ki’s, the full conditionals of the cow-
specific parameters, χ(ki) are sampled as follows: for
ki = 1, sample full conditional of β0i; for ki = 2, sam-
ple full conditionals of β0i and t∗i ; and for ki = 3,
sample full conditionals of β0i, β1i and t∗i . Note that
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if the model has accepted a change to (ki, χ
(ki)) in

step 1, this step will represent a “second” updating of
the cow-specific parameters, χ(ki). As discussed later,
this “double-sampling” does not impair convergence of
the chain. It does, however, improve mixing since, with-
out it, the cow-specific parameters will only be updated
when a between model move is accepted in step 1.

3. Given model indicators and cow-specific parameters,
the global parameters are updated.

All full conditionals, except the ones for (ki, χ
(ki)), condi-

tion on ki and, hence, are fixed-dimensional. Before describ-
ing how RJMCMC is used to sample the full conditional of
(ki, χ

(ki)), we give the fixed-dimensional full conditionals.
Letting ni represent the number of subjects in model i

for i = 1, 2, 3, the full conditionals for the global parameters
are:

(6)

(q1, q2, q3)|else ∼ Dirichlet(n1 + ζ1, n2 + ζ2, n3 + ζ3)

β0|else ∼ N(
nτβ0

nτβ0 + b
β̄0 +

b

nτβ0 + b
μβ0 , nτβ0 + b)

where β̄0 =

∑
i
β0i

n

τβ0 |else ∼ Γ(
n

2
+ aβ0 ,

1

2

∑
i

(β0i − β0)2 + bβ0)

τe|else ∼ Γ(
1

2

∑
i

mi + aτe ,
1

2

[ ∑
i:ki∈{1,2}

∑
j

(Sij − β0i)
2

+
∑

i:ki=3

∑
j

(Sij − β0i − β1i(tij − t∗i − lag)+)2
]

+ bτe )

spF |else ∼ Beta(
∑

i:ki=1

∑
j

(1 − Fij)

+
∑

i:ki∈{2,3}

∑
j:tij<t∗

i

(1 − Fij) + aspF ,

∑
i:ki=1

∑
j

Fij +
∑

i:ki∈{2,3}

∑
j:tij<t∗

i

Fij + bspF )

seF |else ∼ Beta(
∑

i:ki∈{2,3}

∑
j:tij≥t∗

i

Fij + aseF ,

∑
i:ki∈{2,3}

∑
j:tij≥t∗

i

(1 − Fij) + bseF )

lag|else ∝
∏

i:ki=3

[ mi∏
j=1

exp{− τe

2
(Sij − β0i−

β1i(tij − t∗i − lag)+)2}
]
· 1

lagn2

·
[ ∏

i:ki=3

1

timi − lag − dobi

]
· I(min∗

l < lag < max∗
l ), where

min∗
l = max{{timi − t∗i ,∀i � ki = 2}, minl}

max∗
l = min{{timi − t∗i ,∀i � ki = 3}, maxl}

μγ |else ∼ N(
τγn3

δ
·

∑
i:ki=3

logβ1i

n3
+

bμγ

δ
aμγ , δ)

where δ = τγn3 + bμγ

τγ |else ∼ Γ(
n3

2
+ aτγ ,

1

2

∑
i:ki=3

(logβ1i − μγ)2 + bτγ )

The full conditional for lag is not recognizable. In fact, it
is not even continuous. In addition, the permissible values of
lag are constrained by the current latent state assignments,
ki, and the corresponding t∗i ’s. In particular, the requirement
timi − lag < t∗i ≤ timi for all current state 2 cows yields the
constraint maxi:ki=2{timi −t∗i } < lag. Similarly, the require-
ment that dobi < t∗i ≤ timi − lag for cows with ki = 3 yields
the other constraint, lag ≤ mini:ki=3{timi − t∗i }. Note that
these constraints ensure the sampled value of lag does not
change any of the current ki’s. A slice sampler is used to
sample the full conditional of lag.

In one sweep or iteration of the Gibbs sampler, we sam-
ple the global parameters using the full conditionals just de-
scribed. We also sample the cow-specific coefficients/latents
for each cow given the current state of that cow, ki. As pre-
viously mentioned, the full conditionals that are sampled for
the ith cow in the current iteration depend on ki. We thus
have, if ki = 1 in the current iteration, which corresponds to
an animal that is not infected over the course of the study,

β0i|else, ki = 1 ∼ N(β̂0i, τemi + τβ0),

where β̂0i = τemi

τemi+τβ0
S̄i + τβ0

τemi+τβ0
β0 and S̄i = 1

mi

∑
j Sij .

If ki = 2, the current classification is infection without serol-
ogy reaction so we sample the full conditionals of β0i and t∗i .
The full conditional for β0i is the same as in the ki = 1 case
because in either case there is no serology reaction, just a
“flat” baseline serology trajectory. For t∗i , we have the fol-
lowing piecewise constant function

p(t∗i |ki = 2, else) ∝∏
j:tij<t∗

i

[
Sp

1−Fij

F (1 − SpF )Fij

] ∏
j:tij≥t∗

i

[
Se

Fij

F (1 − SeF )1−Fij

]

×I(timi − lag < t∗i < timi)

Finally, if ki = 3, the infection with serology reaction case,
we sample β0i, β1i and t∗i . The full conditional for β0i is the
same as for the ki = 1 case except we replace S̄i with ¯̃Si =
1

mi

∑
j{Sij − β1i(tij − t∗i − lag)+}. Because β1i and t∗i are

highly correlated, we sample them jointly using the following
full conditional

(7)

p(β1i, t
∗
i |ki = 3, else) ∝

exp{− τe

2

mi∑
j=1

(Sij − β0i − β1i(tij − t∗i − lag)+)2}
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×
∏

j:tij<t∗
i

[
Sp

1−Fij

F (1 − SpF )Fij

] ∏
j:tij≥t∗

i

[
Se

Fij

F (1 − SeF )1−Fij

]

× 1

β1i
exp{− τγ

2
(log(β1i) − μγ)2} · I(dobi < t∗i < timi − lag)

This joint full conditional does not have a recognizable form
so we use a random walk Metropolis sampler. Since the sup-
port is R

+ × (minl, maxl) and we wish to use a bivariate
normal proposal distribution having support R

2, we make
the following transformation:(

log β̃1i

logit(
t̃∗i −dobi

timi
−lag−dobi

)

)
=

(
γ̃
ω̃

)

∼ N

((
log β

(t)
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logit(
t
∗(t)
i

−dobi

timi
−lag−dobi

)

)
, Σ̃

)

Thus, we generate γ̃ and ω̃ from the indicated bivariate
normal. We then transform back to the original variables
using β̃1i = exp(γ̃) and t̃∗i = (timi − lag − dobi)expit(ω̃) +
dobi.

Using the change of variables technique, we obtain the
induced proposal distribution on (β̃1i, t̃

∗
i ):

q(β̃1i, t̃
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i ) ∝ |Σ̃|−

1
2 exp{−1

2
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)
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∣∣∣∣∣
1
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0

0 1
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i
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The proposal is accepted with probability min(1,α) where

α =
p(β̃1i, t̃

∗
i |else)

p(β
(t)
1i , t

∗(t)
i |else)

· q(β
(t)
1i , t
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i )
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∗
i |else)

p(β
(t)
1i , t

∗(t)
i |else)

· β̃1i(t̃
∗
i − dobi)(timi − lag − t̃∗i )

β
(t)
1i (t

∗(t)
i − dobi)(timi − lag − t

∗(t)
i )

The covariance matrix of the proposal distribution, Σ̃ can
be initially taken as the identity matrix times a tuning pa-
rameter, σp. After a pilot run, the covariance matrix should
be tuned. An empirical estimate of the covariance matrix
from a pilot run of about 5,000 iterations resulted in good
acceptance rates and mixing in the simulations and data
analysis in this paper.

Reversible jump MCMC to sample model
indicators

We now devise a reversible jump strategy to update
(ki, χ

(ki)), the vector of parameters corresponding to cow
i. We embed the RJMCMC algorithm in a Gibbs sampler,
using it to sample the joint full conditional of (ki, χ

(ki)),

because these are the only full conditionals that are not
fixed-dimensional. This approach was taken by Richardson
and Green (1995).

We start by defining the allowed between-model moves.
Next, for each move type, we define the mechanism for gen-
erating the vector of proposal parameters and calculate the
acceptance probability.

We permit moves to “adjacent” models only. In prac-
tice, restricting moves to models that are “close” to the
current model improves mixing since moves to “distant”
models are unlikely to be accepted (Brooks, Giudici and
Roberts, 2003). Since our model space (for a cow) only in-
cludes three parameter spaces, our intuition is that mix-
ing would not be hampered significantly by including jumps
between models 1 and 3. However, we still restrict moves
to adjacent models to simplify computation, noting that
the resulting chain remains irreducible since a cow may
move between any two models one step at a time. Specifi-
cally, we propose between-model moves as follows: if a cow
is in disease status 1 or 3, we propose a jump to model
2 with probability 1. If the disease status is 2, we pro-
pose a jump to model 1 or 3 with equal probability. Us-
ing the notation πkk′ to denote the probability of propos-
ing a move from state k to state k′, we can summarize
the between-model moves as follows: π12 = π32 = 1 and
π21 = π23 = 1

2 .

Moving between models 1 and 2

In order to construct a move from disease status 1 to 2,
we need to define a bijection between the two associated
parameter spaces, β0i and (β0i, t

∗
i ). Since we can only define

a bijection between two spaces if their dimensions match,
we augment the model 1 parameter “vector,” β0i, with a
generated auxiliary variable, u. We generate u using the
prior for t∗i under model 2 (see equation 2). Recall this prior
is denoted by π2(·). Letting β

(t)
0i denote the current latent

associated with cow i, we can now define a bijection

T12(β
(t)
0i , u) = (β̃0i, t̃∗i ), where β̃0i = β

(t)
0i , t̃∗i = u

This bijection is actually just the identity map.
We now calculate the acceptance probability. Using [Y |X]

to denote the distribution of Y conditional on X, we have
that the serology portion of the likelihood for cow i under
model z, z ∈ {1, 2}, can be represented [Si|β0i, τe, ki = z].
Likewise, cow i’s fecal culture contribution to the likelihood
is [Fi|spF , ki = 1] under model 1 and [Fi|t∗i , seF , spF , ki = 2]
under model 2. In the following calculations, we assume that
parameters not directly involved in the bijection are set at
their current values although we drop the usual superscript
notation, i.e. τe actually represents τ

(t)
e . Also, we let π(·)

generically represent the prior on a parameter or the distri-
bution of a random slope or intercept. The proposal to (i)
move from model 1 to model 2 and (ii) accept the proposed
parameters (β̃0i, t̃∗i ) has acceptance probability min(α12,1)
where
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α12

=
p(β̃0i, t̃∗i |ki = 2, else)

p(β
(t)
0i |ki = 1, else)

· π21

π12 · π2(u)
· |J |

=
[Si|β̃0i, τe, ki = 2] · [Fi|t̃∗i , seF , spF , ki = 2]

[Si|β(t)
0i , τe, ki = 1] · [Fi|spF , ki = 1]

·
q2π(β̃0i)π2(t̃∗i )

q1π(β
(t)
0i )

× π21

π12 · π2(u)
· |J |

=
[Si|β(t)

0i , τe, ki = 2] · [Fi|u, seF , spF , ki = 2]

[Si|β(t)
0i , τe, ki = 1] · [Fi|spF , ki = 1]

·
q2π(β

(t)
0i )π2(u)

q1π(β
(t)
0i )

× π21

π12 · π2(u)
· |J |

=
[Fi|t̃∗i = u, seF , spF , ki = 2]

[Fi|spF , ki = 1]
· q2

q1
· π21

π12
· |J |

=
sp

∑
j:tij<t̃∗

i

(1−Fij)

F (1 − spF )

∑
j:tij<t̃∗

i

Fij

se

∑
j:tij≥t̃∗

i

Fij

F

sp

∑
j

(1−Fij)

F (1 − spF )

∑
j

Fij

× (1 − seF )

∑
j:tij≥t̃∗

i

(1−Fij)

1
· q2

q1
· π21

π12
· 1

We obtain line 3 by writing out the posterior in the first
factor in line 2 as the likelihood times the prior. Lines 5 and
6 are obtained by substituting the proposed values into the
numerator. Since the serology portion of the likelihood is
the same under models 1 and 2, these factors cancel in line
7. Finally, the determinant of the Jacobian is 1 since

∂T12(β
(t)
0i , u)

∂(β(t)
0i , u)

=
∂(β̃0i, t̃

∗
i )

∂(β(t)
0i , u)

=
∂(β(t)

0i , u)

∂(β(t)
0i , u)

= I2

where I2 is the 2 by 2 identity matrix.
For the reverse move, from model 2 to 1, we transform

T21(β
(t)
0i , t

∗(t)
i ) = (β(t)

0i , t
∗(t)
i ) = (β̃0i, ũ) and the acceptance

probability is min(α−1
12 ,1) where α12 is calculated with t̃∗i

replaced by t
∗(t)
i .

Moving between models 2 and 3

In proposing a move from model 2 to model 3, we con-
struct a more complex bijection in order to obtain propos-
als that have a reasonable chance of being accepted. We
generate a proposal in the parameter space of model 3 by
generating u1, which will be the proposal of t∗i , from the
density proportional to the model 3 fecal culture portion
of the likelihood. We draw u2 from a N(μγ , τγ) pdf, using
the current values of μγ and τγ , and take eu2 as the pro-
posal for β1i. These choices of auxiliary variables simplify
the acceptance probability and appear to give reasonable
mixing between latent infection states 2 and 3. Note that
we define a bijection of dimension 4 even though we only
add one cow-specific parameter, β1i, to the vector of model
2 parameters, (β(t)

0i , t
∗(t)
i ). This is because the support of t∗i

varies by model. Hence, it is simpler to generate a new t∗i
as a proposal for model 3 using the auxiliary variable u1.

However, we still need the mapping to be a bijection so
we map t

∗(t)
i to yet another auxiliary variable, v, generated

using the prior π2(·) given in equation 2 (this results in a
sensible proposal for the reverse move T32 = T−1

23 given in
equation 9). Define T23(β

(t)
0i , t

∗(t)
i , u1, u2) = (β̃0i, β̃1i, t̃∗i , v),

where u1 has pdf ψ(u1) ∝ sp

∑
j:tij<u1

(1−Fij)

F (1 −

spF )
∑

j:tij<u1
Fij

se

∑
j:tij≥u1

Fij

F (1 − seF )
∑

j:tij≥u1
(1−Fij) ·

I(dobi < u1 < timi − lag) and u2 ∼ N(μγ , τγ). We also
have β̃0i = β

(t)
0i , β̃1i = eu2 , t̃∗i = u1, and v = t

∗(t)
i .

To calculate the corresponding acceptance probabil-
ity, we represent cow i’s serology likelihood under model
3 by [Si|β0i, β1i, t

∗
i , τe, ki = 3]. Also, cow i’s fecal cul-

ture contribution to the likelihood under model 3 is
[Fi|t∗i , seF , spF , ki = 3]. Using φ(·) to represent the pdf
of the standard normal distribution, we accept the pro-
posed move from model 2 to 3 with probability min(α23,1)
where

(8)

α23 =
p(β̃0i, β̃1i, t̃∗i |ki = 3, else)

p(β
(t)
0i , t

∗(t)
i |ki = 2, else)

× π32 · π2(v)

π23 · ψ(u1) · √τγφ(
√

τγ(u2 − μγ))
· |J |

=
[Si|β̃0i, β̃1i, t̃

∗
i , τe, ki = 3] · [Fi|t̃∗i , seF , spF , ki = 3]

[Si|β(t)
0i , τe, ki = 2] · [Fi|t∗(t)i , seF , spF , ki = 2]

×
q3π(β̃0i) · 1

β̃1i

√
τγφ(

√
τγ(log β̃1i − μγ)) · π3(t̃

∗
i )

q2π(β
(t)
0i )π2(t

∗(t)
i )

× π32 · π2(v)

π23 · ψ(u1) · √τγφ(
√

τγ(u2 − μγ))
· |J |

=
[Si|β(t)

0i , eu2 , u1, τe, ki = 3] · [Fi|u1, seF , spF , ki = 3]

[Si|β(t)
0i , τe, ki = 2] · [Fi|t∗(t)i , seF , spF , ki = 2]

×
q3π(β

(t)
0i ) · 1

eu2

√
τγφ(

√
τγ(log(eu2) − μγ)) · π3(u1)

q2π(β
(t)
0i )π2(t

∗(t)
i )

× π32 · π2(t
∗(t)
i )

π23 · ψ(u1) · √τγφ(
√

τγ(u2 − μγ))
· |J |

=
[Si|β(t)

0i , eu2 , u1, τe, ki = 3] · [Fi|u1, seF , spF , ki = 3]

[Si|β(t)
0i , τe, ki = 2] · [Fi|t∗(t)i , seF , spF , ki = 2]

×
q3 · 1

eu2 · π3(u1)

q2
· π32

π23 · ψ(u1)
· |J |

Lines 3 and 4 of equation 8 are obtained by writing out
the posterior given on the right-hand side of the equation
in line 1 as likelihood (line 3) times prior (line 4). Lines
6–8 are obtained by substituting the proposed values de-
fined by the bijection T23 as known functions of β

(t)
0i , t

∗(t)
i , u1,

and u2 in for β̃0i, β̃1i, t̃∗i , and v. Since some of the propos-
als were chosen to be priors, we obtain some cancelation in
lines 6–8, which gives the simpler expression in lines 9–10.
The acceptance probability is evaluated using the current
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values of all global parameters (seF , τe,etc). Note that we
need to include a proposal distribution in the numerator,
i.e. π2(v), for this move since the reverse move from model
3 to model 2 would require the generation of a model 2 in-
fection time from the prior π2(·). The Jacobian is calculated
as follows:

|J | =
∣∣∣ ∂(β̃0i, β̃1i, t̃

∗
i , v)

∂(β(t)
0i , t

∗(t)
i , u1, u2)

∣∣∣ =

∣∣∣∣∣∣∣∣
1 0 0 0
0 0 0 eu2

0 0 1 0
0 1 0 0

∣∣∣∣∣∣∣∣
= eu2

The proposal for a move from model 3 to model 2 is al-
ready defined as it is the inverse of the function T23. Specif-
ically, we have

T32(β
(t)
0i , β

(t)
1i , t

∗(t)
i , v) = T−1

23 (β(t)
0i , β

(t)
1i , t

∗(t)
i , v)(9)

= (β̃0i, t̃
∗
i , ũ1, ũ2)

where β̃0i = β
(t)
0i , t̃∗i = v, ũ1 = t

∗(t)
i and ũ2 = log β

(t)
1i . The

probability of accepting a proposed move from model 3 to
model 2 is min(α32,1) where α32 = α−1

23 . Since we are at-
tempting a move from model 3 to model 2, α23 is calculated
with the current values of the parameters for model 3 and
the proposed values for model 2.
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