Solutions to HW #5: Evens
Section 2.2

2. vertex: \((-1, 1)\)
\[g(x) = (x+1)^2 + 1 \]

4. vertex: \((-1, -1)\)
\[f(x) = (x+1)^2 - 1 \]

28. \[f(x) = x^2 - 2x - 15 \]
\[f(x) = (x^2 - 2x + 1) - 15 - 1 \]
\[f(x) = (x - 1)^2 - 16 \]
vertex: \((1, -16)\)
x-intercepts:
\[0 = (x - 1)^2 - 16 \]
\[(x - 1)^2 = 16 \]
\[x - 1 = \pm 4 \]
\[x = -3 \text{ or } x = 5 \]
y-intercept:
\[f(0) = 0^2 - 2(0) - 15 = -15 \]
The axis of symmetry is \(x = 1\).

\[f(x) = x^2 - 2x - 15 \]

Domain: \((-\infty, \infty)\)

Range: \([-16, \infty)\)
40. \(f(x) = 2x^2 - 8x - 3 \)

 a. \(a = 2 \). The parabola opens upward and has a minimum value.

 b. \(x = \frac{-b}{2a} = \frac{8}{4} = 2 \)

 \(f(2) = 2(2)^2 - 8(2) - 3 \)

 \(= 8 - 16 - 3 = -11 \)

 The minimum is \(-11\) at \(x = 2 \).

 c. Domain: \((-\infty, \infty)\) Range: \([-11, \infty)\)
Maximize the area of the playground with 400 feet of fencing.
Let x be the length of the rectangle. Let y be the width of the rectangle.
Since we need an equation in one variable, use the perimeter to express y in terms of x.

$$
2x + 3y = 400
$$

$$
3y = 400 - 2x
$$

$$
y = \frac{400 - 2x}{3}
$$

$$
y = \frac{400}{3} - \frac{2}{3}x
$$

We need to maximize $A = xy = x \left(\frac{400}{3} - \frac{2}{3}x \right)$.

Rewrite A as a function of x.

$$
A(x) = x \left(\frac{400}{3} - \frac{2}{3}x \right) = -\frac{2}{3}x^2 + \frac{400}{3}x
$$

Since $a = -\frac{2}{3}$ is negative, we know the function opens downward and has a maximum at

$$
x = -\frac{b}{2a} = -\frac{\frac{400}{3}}{2 \left(-\frac{2}{3} \right)} = -\frac{400}{4} = 100.
$$

When the length x is 100, the width y is

$$
y = \frac{400}{3} - \frac{2}{3}x = \frac{400}{3} - \frac{2}{3}(100) = \frac{200}{3} = 66\frac{2}{3}.
$$

The dimensions of the rectangular playground with maximum area are 100 feet by $66\frac{2}{3}$ feet. This gives an area of $100 \cdot 66\frac{2}{3} = 6666\frac{2}{3}$ square feet.
94. We know \((h,k) = (-3, -4) \), so the equation is of the form
\[
 f(x) = a(x-h)^2 + k \\
 = a(x-(-3))^2 + (-1) \\
 = a(x+3)^2 - 1
\]

We use the point \((-2, -3)\) on the graph to determine the value of \(a\):
\[
 f(x) = a(x+3)^2 - 1 \\
 -3 = a(-2+3)^2 - 1 \\
 -3 = a(1)^2 - 1 \\
 -3 = a - 1 \\
 -2 = a
\]

Thus, the equation of the parabola is
\[
 f(x) = -2(x+3)^2 - 1 .
\]
2.3

62. \(f(x) = -3x^3(x-1)^2(x+3) \)

a. Since \(a_n < 0 \) and \(n \) is even, \(f(x) \) falls to the left and the right.

b. \(x = 0, x = 1, x = -3 \)
The roots at 0 and -3 have odd multiplicity so \(f(x) \) crosses the x-axis at those points.
The root at 1 has even multiplicity so \(f(x) \) touches the axis at (1, 0).

c. \(f(0) = -3(0)^3(0-1)^2(0+3) = 0 \)
The y-intercept is 0

d. \(f(-x) = 3x^3(-x-1)^2(-x+3) \)
The graph has neither y-axis nor origin symmetry.

e. The graph has 2 turning points and \(2 \leq 6 - 1 \).

\[
\begin{array}{c}
\text{\(y \uparrow \)} \\
\text{500} \\
\text{\(y \downarrow \)} \\
\text{5} \\
\text{\(x \uparrow \)} \\
\end{array}
\]
\[f(x) = -3x^3(x-1)^2(x+3) \]

2.4

2. \(\frac{x+5}{x-2} \)

\[
\begin{align*}
x^2 + 3x - 10 \\
x^2 - 2x \\
5x \\
5x - 10 \\
0
\end{align*}
\]
The answer is \(x + 5 \).