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Introductory Remarks

In a celebrated paper titled The Unreasonable Effectiveness of Mathematics in

the Natural Sciences written in 1960, Eugene Wigner, a distinguished

twentieth century physicist wrote: “. . . the enormous usefulness of

mathematics in the natural sciences is something bordering on the

mysterious and that there is no rational explanation for it.” Earlier,

Albert Einstein had said: “How can it be that mathematics, being after

all a product of human thought which is independent of experience,

is so admirably appropriate to the objects of reality?”

In this talk I will first briefly discuss the historical background to the above

statements. Drawing on examples related to my own research, I will then

attempt to illustrate the breadth of the application of mathematics in physics.
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How Effective is Mathematics?

• Early mathematics: Numbers, Geometry, Algebra (Euclid, Khwarizmi)

• Issac Newton (1643-1727) & Philosophi Naturalis Principia

Mathematica (1687), “most influential science book”

The foundations of classical physics, which would reach its pinnacle by the end

of the 19th century, as well as differential and integral calculus, were

essentially delivered in finished form in Newton’s Principia.

• The Age of Reason and Pierre-Simon Laplace (1749-1827): We may regard

the present state of the universe as the effect of its past and the cause of its

future. An intellect which at a certain moment would know all forces that set

nature in motion, and all positions of all items of which nature is composed, if

this intellect were also vast enough to submit these data to analysis, it would

embrace in a single formula the movements of the greatest bodies of the

universe and those of the tiniest atom; for such an intellect nothing would be

uncertain and the future just like the past would be present before its eyes.

3



• Was Laplace justified in making the above statement?

By the end of the 19th century, the rate at which the orbit of Mercury

precesses was known accurately:

Observed Precession Rate = 5601 arcsec/century = 1.556 deg/century. (1)

Newtonian mechanics (laws of motion plus gravity; coupled differential

equations and perturbation theory) predicted

Newtonian Prediction = 5558 arcsec/century = 1.544 deg/century, (2)

and the difference is

Difference = 43 arcsec/century = 0.012 deg/century,

Relative Difference = 8.0 × 10−8 deg(precession)/deg(revolution). (3)

• Note the closeness of the above agreement, less than one tenth of one ppm.
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• But there’s more!

• Einstein’s theory of gravitation (1915), general relativity, is based on the idea

that space-time geometry is not Euclidean (flat) but Riemannian (curved).

• Paths of shortest distance (geodesics) near a massive body appear curved,

e.g., they are very nearly elliptical around a star or a planet.

• Gravitation is thus geometrized, and the gravitational field is replaced by the

metric tensor of space-time.

• Einstein showed that his theory of gravitation predicts an increase of

precession rate for Mercury of 43 arc-sec/century!

• He also predicted that light from distant stars would be bent by the sun on

the way to the Earth. This quantitative prediction was dramatically verified in

1919.

• The agreement on precession rates was now at the ppb scale!
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Pure or Applied?

• Bernhard Riemann’s work on non-Euclidian geometry would be considered

“pure” mathematics for his day, though clearly not after 1915. Today, it is the

nuts and bolts of our cosmology!

• Riemann, in his study of the distribution of prime numbers (1859), advanced

the hypothesis that the non-trivial zeroes of his ζ-function would all lie on the

line 1

2
+ iy, where y is a real number.

• Can prime numbers be possibly relevant to the real world?

• Early in the 20th century, the laws of motion for microscopic objects (e.g.,

atoms and nuclei) were discovered and found to obey a non-commutative

algebra.

• Thus position and momentum are represented by self-adjoint operators,

respectively x̂ and p̂, on a Hilbert space (a complete metric space with a

complex inner product) whose points correspond to possible states of the

physical system. These operators obey the Heisenberg commutation condition,

x̂p̂ − p̂x̂ = i1̂ (in units such that h̄ = 1).
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• Around the turn of the century, Hilbert and Pólya conjectured that there

exists a self-adjoint operator Ĥ whose spectrum coincides with the real part of

the complex zeros of ζ, and, following the advent of quantum mechanics, Pólya

speculated that Ĥ may be the energy operator of a physical system.

• At the end of the 20th century, Berry speculated that some self-adjoint

extension of the operator x̂p̂+p̂x̂

2
might be the sought-after Ĥ .

• This is where things stand at the moment, and the conjecture remains

unresolved. However, the story of this “prime obsession” does not end here!
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Primes in our lives

• Today, most commercial (as well as diplomatic/intelligence community)

messages are secured using a public-key encryption system called RSA (after

Rivest, Shamir, and Adleman).

• At the core of the RSA scheme is the computational difficulty of factoring a

large number (e.g., 1024 bits long) into its prime factors (believed to belong to

the NP computational complexity class).

• In 1994, Peter Shor published an algorithm which, used with a quantum

computer, reduces the classical factorization problem (NP class) to a

polynomial-time (P class) computation. The catch is the quantum computer!

• Amusingly, quantum theory, having potentially undermined the most secure

public encryption system available, provides its own remedy, quantum

cryptography, believed to be “absolutely” unbreakable!

• The basis of quantum cryptography is the non-commutative nature of

dynamical observables in quantum theory.
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Chaos, Randomness, and algorithmic Complexity

• At the end of the 19th century, Henri Poincaré realized that Laplace’s

promise could not be met in as simple a case as the gravitational three-body

problem.

• By the seventies and eighties it was widely recognized that a typical

deterministic, nonlinear dynamical system (of three or more dynamical

variables) would be likely to exhibit the property of sensitivity to initial

conditions, thus rendering long-time predictability impossible.

• This ubiquitous phenomenon is now known as “chaos,” and causes the

long-time behavior of the system to be effectively random.

• Here’s a simple model (known as the logistic map):

xn+1 = µxn(xn − 1), (4)

where µ ∈ (0, 4] is a parameter, n is an integer, and 0 < xn < 1 for any n.
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• The output of the logistic map for large n is a random sequence.

• What is a random sequence? Is the sequence of numbers in the decimal

expression of the venerable number π random?

• Algorithmic complexity of an object such a sequence S of N binaries is

defined by reference to the length of the shortest description of the sequence in

some standard language. Let this shortest description be encoded as a binary

sequence of length KN (S). Then, the algorithmic complexity of a sequence S

is defines as

k(S) := limN→∞KN (S)/N. (5)

• The property of sensitivity to initial conditions for chaotic systems causes an

exponential growth of information production as the system evolves. The rate

of that growth, known as the Kolmogorov-Sinai entropy, turns out to be the

same as the algorithmic complexity of a the output sequence of the system,

such as the {xn} of the logistic map.
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Concluding Remarks

• Einstein once said: “The most incomprehensible thing about the

world is that it is comprehensible”. We may rephrase the latter part of

this statement by saying that The laws of Nature are susceptible to a

high level of algorithmic compression. This would seem to be a necessary

condition for the incomprehensible effectiveness of mathematics in describing

the physical world.

• Some contend that we invent the mathematics that suit our needs.

• But where do we get the capacity, the facility, to do mathematics?

• Here’s an intriguing thought: A human young of a few months appears to

have a sense of universal grammar, an innate, context-free, facility for

linguistic structure, and understand linguistic recursion (Chomsky, 1955).
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