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Abstract

Abstract

The extremes of correlation level in the environment are shown to lead
to opposite directions of the thermodynamic arrow. In a low-entropy
environment where the mean correlation level is low –the
Stosszahlansatz scenario– the Clausius inequality is established using
general arguments of quantum information theory. For a
high-correlation environment –the Verschränkung scenario– a model of
entangled systems is constructed in which heat flows from the cold to
the hot body in direct violation of the second law. This model clearly
shows that the second law of thermodynamics is a consequence of
quantum statistical dynamics under conditions of low ambient
correlations and breaks down under opposite conditions. When the
Stosszahlansatz scenario prevails, the second law is valid for systems of
any size, although its utility is limited for microscopic systems where
fluctuations are not negligible relative to mean values. While the von
Neumann entropy and other information-theoretic objects are used
extensively in establishing the above results, all conclusions are based
on energy flow between systems without any assumption on the
thermodynamic interpretation of such objects. The results of this work
strongly support the expectation, first expressed by Boltzmann and
subsequently elaborated by others, that the second law is an emergent
consequence of fundamental dynamics operating in a low-entropy
cosmological environment functioning as an ideal information sink.
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introduction

Introduction

The status of the second law and macroscopic irreversibility have
been debated since Boltzmann, with little consensus achieved.

We will show that the second law holds if the environment is
low-correlation, Stosszahlansatz or Scenario S, and breaks if
high-correlation, Verschränkung or Scenario V.
Our universe appears to be in Scenario S. Here’s Boltzmann: “...
the universe, considered as a mechanical system –or at least a very
large part of it which surrounds us– started from a very
improbable state, and is still in a very improbable state.”
If our universe is indeed accelerating, we can count on the Earth
to continue dumping waste information onto the surrounding
space and maintaining a low-correlation environment where
thermodynamics as we know it prevails.
We use methods of quantum information dynamics and base our
conclusions on energy flow thereby avoiding controversial issues of
interpretation, e.g., of entropic quantities.
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Mean Entropy and Two-body Correlations

Mean Entropy and Two-body Correlations

Theorem

Two-body correlation, or mutual information, is on average bounded by
single-body entropy in any collection of N ≥ 3 interacting systems.

Let the systems be labeled i = 1, 2, . . . N , and the (von Neumann)
entropies Si. The two-body correlation information for the (i, j) pair is
defined as Iij = Si + Sj − Sij .
Strong subadditivity implies Si + Sj ≤ Sik + Sjk. There are
N(N − 1)/2 such inequalities, which, when aggregated, give

[N(N − 1)/2]−1
∑N(N−1)/2

i<j=1
Iij ≤ N−1

∑N

i=1
Si. (1)

Thus Iav ≤ Sav, indicating that a small average entropy guarantees a
low level of two-body correlations.
The significance of this result is the universal validity of Boltzmann’s
Stosszahlansatz , for all things large or small, as a likely condition in
a low-entropy universe.
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The Fundamental Inequality

The Fundamental Inequality

Consider the evolution of any system initially in the thermal
equilibrium state ρi = exp(−βiHi)/Zi to any state ρf , where βi = 1/Ti,
Hi, and Zi are the initial inverse temperature, Hamiltonian, and
partition function respectively (Boltzmann’s constant set to unity).

In general, the Hamiltonian will change during the evolution
(causing exchange of work), the system will evolve in a
non-unitary manner, and ρf will be out of equilibrium.

We can use the non-negativity of the relative entropy S(ρf‖ρi) to
assert that

S(ρf‖ρi) = βi∆U −∆S − βitr(ρf∆H) ≥ 0, (2)

where ∆U = Uf −Ui = tr(ρfHf )− tr(ρiHi), and ∆S = Sf − Si. This is
the fundamental inequality.

Hossein Partovi (Sacramento State) Verschränkung vs. Stosszahlansatz September 14, 2010 6 / 15



The Fundamental Inequality

The Fundamental Inequality

Consider the evolution of any system initially in the thermal
equilibrium state ρi = exp(−βiHi)/Zi to any state ρf , where βi = 1/Ti,
Hi, and Zi are the initial inverse temperature, Hamiltonian, and
partition function respectively (Boltzmann’s constant set to unity).

In general, the Hamiltonian will change during the evolution
(causing exchange of work), the system will evolve in a
non-unitary manner, and ρf will be out of equilibrium.

We can use the non-negativity of the relative entropy S(ρf‖ρi) to
assert that

S(ρf‖ρi) = βi∆U −∆S − βitr(ρf∆H) ≥ 0, (2)

where ∆U = Uf −Ui = tr(ρfHf )− tr(ρiHi), and ∆S = Sf − Si. This is
the fundamental inequality.

Hossein Partovi (Sacramento State) Verschränkung vs. Stosszahlansatz September 14, 2010 6 / 15



The Fundamental Inequality

The Fundamental Inequality

Consider the evolution of any system initially in the thermal
equilibrium state ρi = exp(−βiHi)/Zi to any state ρf , where βi = 1/Ti,
Hi, and Zi are the initial inverse temperature, Hamiltonian, and
partition function respectively (Boltzmann’s constant set to unity).

In general, the Hamiltonian will change during the evolution
(causing exchange of work), the system will evolve in a
non-unitary manner, and ρf will be out of equilibrium.

We can use the non-negativity of the relative entropy S(ρf‖ρi) to
assert that

S(ρf‖ρi) = βi∆U −∆S − βitr(ρf∆H) ≥ 0, (2)

where ∆U = Uf −Ui = tr(ρfHf )− tr(ρiHi), and ∆S = Sf − Si. This is
the fundamental inequality.

Hossein Partovi (Sacramento State) Verschränkung vs. Stosszahlansatz September 14, 2010 6 / 15



The Fundamental Inequality

The Fundamental Inequality

Consider the evolution of any system initially in the thermal
equilibrium state ρi = exp(−βiHi)/Zi to any state ρf , where βi = 1/Ti,
Hi, and Zi are the initial inverse temperature, Hamiltonian, and
partition function respectively (Boltzmann’s constant set to unity).

In general, the Hamiltonian will change during the evolution
(causing exchange of work), the system will evolve in a
non-unitary manner, and ρf will be out of equilibrium.

We can use the non-negativity of the relative entropy S(ρf‖ρi) to
assert that

S(ρf‖ρi) = βi∆U −∆S − βitr(ρf∆H) ≥ 0, (2)

where ∆U = Uf −Ui = tr(ρfHf )− tr(ρiHi), and ∆S = Sf − Si. This is
the fundamental inequality.

Hossein Partovi (Sacramento State) Verschränkung vs. Stosszahlansatz September 14, 2010 6 / 15



The Fundamental Inequality

Rearranged, Eq. (2) reads

Ti∆S ≤ ∆U − tr(ρf∆H). (3)

It is worth repeating that Eq. (3) governs the interaction of a system
initially in equilibrium with the rest of the universe, which will in
general drive it out of equilibrium. Appearances notwithstanding, it is
different from the standard inequalities of equilibrium
thermodynamics.

For a small change of state, Eq. (3) reads

TidS ≤ ∆U + δW, (4)

where W is the work done by the system. Since the right-hand side is
simply the absorbed heat δQ, we have

dS ≤ δQ/Ti (final state out of equilibrium), (5)

which looks familiar except that the inequality goes the wrong way!

But why? Does it, or the fundamental inequality, violate
time-reversal invariance?
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The Fundamental Inequality

Let us repeat the above derivation, but this time for a process that
starts from an arbitrary state and ends up in equilibrium. It is not
difficult to see that instead of Eq. (2) one gets

S(ρi‖ρf ) = −βf∆U + ∆S + βf tr(ρi∆H) ≥ 0, (6)

which for a small change implies

dS ≥ δQ/Tf (initial state out of equilibrium), (7)

to be compared with dS ≤ δQ/Ti, Eq. (5)

.

In fact, (5) and (7)are
equivalent, as are Eqs. (2) and (6), by virtue of time reversal invariance.

Eqs. (5) and (7) are nevertheless consistent with equilibrium
thermodynamics since, for any small process whose endpoints
are equilibrium states, both (7) and (5) apply, implying that
dS = δQ/T .
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Normal Thermodynamic Behavior

Scenario S: normal thermodynamic behavior

The fundamental inequality, Eq. (2), follows from quantum mechanics.

On the other hand, it is the environmental conditions which provide
the initial conditions that make or break the second law. We will
demonstrate this in terms of the direction of heat flow between a pair
of systems in thermal contact and otherwise isolated.
For a Stosszahlansatz universe, Scenario S, Eq. (1) guarantees low
correlation levels, so a typical pair of systems A and B, in equilibrium
at temperatures TA and TB, will be initially uncorrelated. Therefore
ρAB
i = ρAi ⊗ ρBi and SAB

i = SA
i + SB

i . Upon interaction, the final state
ρAB
f will in general be correlated so that SAB

f ≤ SA
f + SB

f . Since the

pair is isolated, ρAB
i and ρAB

f are related unitarily and SAB
f = SAB

i .
We therefore find

∆SA + ∆SB ≥ 0 (Scenario S: systems initially in equilibrium). (8)

This equation is a consequence of universal Stosszahlansatz and the
origin of irreversibility in the second law.
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demonstrate this in terms of the direction of heat flow between a pair
of systems in thermal contact and otherwise isolated.
For a Stosszahlansatz universe, Scenario S, Eq. (1) guarantees low
correlation levels, so a typical pair of systems A and B, in equilibrium
at temperatures TA and TB, will be initially uncorrelated. Therefore
ρAB
i = ρAi ⊗ ρBi and SAB

i = SA
i + SB

i . Upon interaction, the final state
ρAB
f will in general be correlated so that SAB

f ≤ SA
f + SB

f .

Since the

pair is isolated, ρAB
i and ρAB

f are related unitarily and SAB
f = SAB

i .
We therefore find

∆SA + ∆SB ≥ 0 (Scenario S: systems initially in equilibrium). (8)

This equation is a consequence of universal Stosszahlansatz and the
origin of irreversibility in the second law.
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Normal Thermodynamic Behavior

Recall that the two systems were initially in equilibrium and only
exchanged heat. Therefore, we find from Eq. (2) that ∆SA ≤ QA/TA

and ∆SB ≤ QB/TB.

Combining the latter with ∆SA + ∆SB ≥ 0, we
find QA/TA +QB/TB ≥ 0, and using QA +QB = 0 (isolated pair
exchanging heat only), we conclude that QA(1/TA − 1/TB) ≥ 0. Thus
QA has the same sign as TB − TA, i.e., heat flows from the initially
hotter system to the initially colder one, whence the normal
thermodynamic arrow.

To establish the second law, consider a system S that undergoes a
cyclic process in thermal contact with a series of heat reservoirs, Rj at
temperature TR

j , absorbing QS
j from the jth reservoir. By applying (2)

to the jth reservoir and using ∆SS
j + ∆SR

j ≥ 0 (valid under Scenario

S), we find ∆SS
j ≥ QS

j /T
R
j . Since entropy changes sum to zero for the

cycle, ∑
j
QS

j /T
R
j ≤ 0. (9)

This is the Clausius inequality, equivalent to the second law.
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Reversed Thermodynamic Behavior

Scenario V: breakdown of the second law

Above, we derived the Clausius inequality on the basis of the condition
∆SA + ∆SB ≥ 0 which prevails when the systems A and B are initially
uncorrelated. What if they are initially correlated?

To answer that question, we will consider the case of maximal initial
correlation between A and B consistent with each initially being
in thermal equilibrium, i.e., entangled in a pure joint state.
Is that even possible?

Let the energy spectra of the two systems, {EA
i } and {EB

i }, be
identical except for a scale factor, i.e., µAEA

i = µBEB
i = εi. The

desired state can then be represented as ρAB = |ΩAB〉〈ΩAB|, with

|ΩAB〉 = Z−1/2
∑

i
exp(−γεi/2)|i;A〉|i;B〉, (10)

where |i;A〉 (|i;B〉) is the ith energy eigenvector of system A (B), γ is
a positive number, and Z−1/2 is a normalization constant.
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Reversed Thermodynamic Behavior

The individual states of the two systems, which are the marginal states
of |ΩAB〉〈ΩAB|, are easily found to be thermal equilibrium (Gibbs)
states at temperatures TA = 1/(γµA) and TB = 1/(γµB), respectively.

Once again we consider a process of heat exchange between A and B
and find QA ≥ TA∆SA, QB ≥ TB∆SB, and QA +QB = 0. Contrary
to Scenario S, here the joint state of the two systems is pure and ρA

and ρB are isospectral, thus forcing the equality SA = SB during the
interaction and ∆SA = ∆SB for the process. Since QAQB ≤ 0, the
above inequalities imply that ∆SA = ∆SB ≤ 0, and

∆SA + ∆SB ≤ 0 (ScenarioV: systems initially in equilibrium). (11)

This reversal leads to QA/TA +QB/TB ≥ ∆SA + ∆SB, which allows
both directions of heat flow, including that from the initially colder
body to the hotter one.
A detailed dilute gas model exhibiting this reversal explicitly can be
found in the first cited reference.
How do we understand this bizarre behavior?
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Reversed Thermodynamic Behavior

The clue is in the dual character of |ΩAB〉: (i) its purity forces SA and
SB to move in lock-step,

while, (ii) the initial equilibrium nature of its
marginals implies that SA and SB can only decrease. There is no
room here for the statistical dominance of one direction of
heat flow over the other, in stark contrast to Scenario S.

Pre-existing correlations can neutralize the overwhelming statistical
biases that normally underlie the second law.

Scenarios S and V are paradigms teaching us that the second
law is not an independent or inviolable law of nature. Rather,
it is a consequence of quantum mechanics conditioned on a
low-correlation environment, and breaks down under the
opposite conditions.
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low-correlation environment, and breaks down under the
opposite conditions.
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Concluding Remarks

Concluding Remarks

The laws of thermodynamics result from quantum dynamics in a
sufficiently low-entropy environment.

These laws hold for all systems great and small. However, it is
only for meso- and macro-sytems that fluctuations are small
enough to make thermodynamic quantities useful.

The reversibility issues that so haunted Boltzmann at the end of
the nineteenth century are seen to arise from the initial conditions
prevailing in the environment. To his credit, Boltzmann had
already guessed that!

I believe that a fundamental understanding of thermodynamic
behavior incorporating the role of the environment is a
prerequisite to the resolution of the reduction problem in quantum
measurement theory.
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