CVP Analysis

Uses of the Contribution Format

The contribution income statement format is used as an internal planning and decision making tool. This approach is useful for:

1. Cost-volume-profit analysis
2. Budgeting
3. Segmented reporting of profit data
4. Special decisions such as pricing and make-orbuy analysis

The Contribution Format

The Contribution Format

	Total		nit
Sales Revenue	\$100,000	S	50
Less: Variable costs	60,000		30
Contribution margin	\$ 40,000	\$	20
Less: Fixed costsNet operating income			
7			
The contribution margin format emphasizes cost behavior. Contribution margin covers fixed costs and provides for income.			

\%
I/S \qquad Bike \qquad Bikes \qquad Bikes

Sales

Variable Costs

Contribution Margin

Fixed Costs

Net Income
\%
I/S \qquad Bikes \qquad Bikes

Sales

Variable Costs

Contribution Margin

Fixed Costs

CVP Relationships in Graphic Form

The relationship among revenue, cost, profit and volume can be expressed graphically by preparing a CVP graph. Racing developed contribution margin income statements at 300,400 , and 500 units sold. We will use this information to prepare the CVP graph.

	Income 300 units		Income 400 units		Income 500 units
Sales	\$	150,000	\$	200,000	\$250,000
Less: variable expenses		90,000		120,000	150,000
Contribution margin	\$	60,000	\$	80,000	\$100,000
Less: fixed expenses		80,000		80,000	80,000
Net operating income	\$	$(20,000)$	\$	-	\$ 20,000

CVP Graph

Units

CVP Graph

Contribution Margin Ratio

The contribution margin ratio is:

$$
\text { CM Ratio }=\frac{\text { Total CM }}{\text { Total sales }}
$$

For Racing Bicycle Company the ratio is:

$$
\frac{\$ 80,000}{\$ 200,000}=40 \%
$$

Each $\$ 1.00$ increase in sales results in a total contribution margin increase of 40¢.

Contribution Margin Ratio

Or, in terms of units, the contribution margin ratio is:

$$
\text { CM Ratio }=\frac{\text { Unit CM }}{\text { Unit selling price }}
$$

For Racing Bicycle Company the ratio is:

$$
\frac{\$ 200}{\$ 500}=40 \%
$$

Contribution Margin Ratio

Break-Even Analysis

Here is the information from Racing Bicycle Company:

	Total	Per Unit		Percent
Sales (500 bikes)	\$250,000	\$	500	100\%
Less: variable expenses	150,000		300	60\%
Contribution margin	\$100,000	\$	200	40\%
Less: fixed expenses	80,000			
Net operating income	\$ 20,000			

Contribution Margin Method

The contribution margin method has two key equations.

$$
\begin{aligned}
& \text { Break-even point } \\
& \text { in units sold }
\end{aligned}=\frac{\text { Fixed expenses }}{C M \text { per unit }}
$$

$\begin{gathered}\text { Break-even point in } \\ \text { total sales dollars }\end{gathered}=\frac{\text { Fixed expenses }}{\text { CM ratio }}$

Contribution Margin Method

Let's use the contribution margin method to calculate the break-even point in total sales dollars at Racing.

$\begin{gathered}\text { Break-even point in } \\ \text { total sales dollars }\end{gathered}=\frac{\text { Fixed expenses }}{C M \text { ratio }}$

\$80,000 $\frac{40 \%}{40 \%}=\$ 200,000$ break-even sales

Target Profit Analysis

Suppose Racing Bicycle Company wants

 to know how many bikes must be sold to earn a profit of $\$ 100,000$.
The Contribution Margin Approach

The contribution margin method can be used to determine that 900 bikes must be sold to earn the target profit of $\$ 100,000$.
$\begin{gathered}\text { Unit sales to attain } \\ \text { the target profit }\end{gathered}=\frac{\text { Fixed expenses + Target profit }}{\text { CM per unit }}$
$\frac{\$ 80,000+\$ 100,000}{\$ 200 / b i k e}=900$ bikes

The Margin of Safety

The margin of safety is the excess of budgeted (or actual) sales over the break-even volume of sales.

Margin of safety = Total sales - Break-even sales

Let's look at Racing Bicycle Company and determine the margin of safety.

The Margin of Safety

If we assume that Racing Bicycle Company has actual sales of $\$ 250,000$, given that we have already determined the break-even sales to be $\$ 200,000$, the margin of safety is $\$ 50,000$ as shown.

The Margin of Safety

The margin of safety can be expressed as

$$
\begin{gathered}
20 \% \text { of sales. } \\
(\$ 50,000 \div \$ 250,000)
\end{gathered}
$$

The Margin of Safety

The margin of safety can be expressed in terms of the number of units sold. The margin of safety at Racing is $\$ 50,000$, and each bike sells for $\$ 500$.

Margin of $=\underline{\$ 50,000}$ Safety in units $=\$ 500$

Operating Leverage

A measure of how sensitive net operating income is to percentage changes in sales.

$$
\begin{gathered}
\text { Degree of } \\
\text { operating leverage }
\end{gathered}=\frac{\text { Contribution margin }}{\text { Net operating income }}
$$

Operating Leverage

At Racing, the degree of operating leverage is 5 .

$\frac{\$ 100,000}{\$ 20,000}=5$ \$20,000

Operating Leverage

With an operating leverage of 5 , if Racing increases its sales by 10%, net operating income would increase by 50%.

Operating Leverage

	Actual sales (500)		Increased sales (550)	
Sales	\$	250,000	\$	275,000
Less variable expenses		150,000		165,000
Contribution margin		100,000		110,000
Less fixed expenses		80,000		80,000
Net operating income	\$	20,000	\$	30,000

10% increase in sales from \$250,000 to \$275,000 . . .
... results in a 50% increase in income from \$20,000 to \$30,000.

The Concept of Sales Mix

- Sales mix is the relative proportion in which a company's products are sold.
- Different products have different selling prices, cost structures, and contribution margins.

> Let's assume Racing Bicycle Company sells bikes and carts and that the sales mix between the two products remains the same.

Multi-product break-even analysis

Racing Bicycle Co. provides the following information:

Key Assumptions of CVP Analysis

(1)Selling price is constant.
(2) Costs are linear.

3 In multiproduct companies, the sales mix is constant.
(4) In manufacturing companies, inventories do not change (units produced $=$ units sold).

