
Cleaning Images of Bad Pixels

and Cosmic Rays Using

IRAF

Lisa A. Wells David J. Bell

September 13, 1994

This document presents the possible uses and examples of the many tasks which may be

used to clean images of bad pixels and cosmic rays with IRAF version 2.10. Basic knowledge of

IRAF structure and syntax is assumed.

Contents

1 Introduction 1

2 About the Tasks 1

3 Editing Images 4

3.1 Fixing Bad Pixels : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

3.1.1 ccdproc : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

3.1.2 �xpix : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

3.1.3 imarith : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

3.2 Fixing Cosmic Rays : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

3.2.1 cosmicrays : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

3.2.2 imsum : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

3.2.3 combine and imcombine : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

3.2.4 lineclean : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

3.3 Fixing Images by Hand : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

3.3.1 imreplace : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

3.3.2 epix : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

3.3.3 imedit : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

4 Fixing Spectral Data 16

4.1 apall : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

4.2 scombine : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

4.3 splot : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19

A Some Important Parameters 20

A.1 Rejection Option Associated Parameters (combine, imcombine, & scombine) : : : 20

B Technical Issues and Problems 21

i



C Getting Bad Pixel and Cosmic Ray Positions 22

D Useful Tasks for Making Masks 25

D.1 mkpattern : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25

D.2 imreplace : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26

D.3 badpiximage : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26

D.4 imcopy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

D.5 imexpr : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

E Adding Noise to an Image: mknoise 28

F Other Useful Documentation 28

ii



1 Introduction

This document presents the many options within IRAF for �xing bad pixels and cleaning cosmic

rays from CCD images. Images and spectra are treated somewhat di�erently, so both appli-

cations will be discussed. The text is based on the tasks available in IRAF Version 2.10.3. It

is assumed that the reader has some preliminary knowledge of IRAF, including the package

structure, getting help, listing and editing task parameters, and executing tasks in general. A

beginner's guide and other useful documentation are listed in Appendix F.

Before reading any further, you should decide if you even want to clean your images. The

techniques presented in this document range from cleaning through sophisticated statistical al-

gorithms to straightforward data editing. In some cases, these methods are designed to extract

as much useful information from an image as possible, while in others they involve data manip-

ulation for purely cosmetic reasons. We will merely present your options and attempt to leave

you well aware of what each task does. The decision as to which cleaning techniques, if any,

should be performed will depend on the statistical and cosmetic requirements of your project.

There are many ways of �xing bad pixel regions in a CCD image. These features are due to

minor aws in the detector and thus will usually be seen in the same locations in every image.

Sometimes, a pixel will be broken entirely, preventing the rest of its line or column from being

accessed during readout. More commonly, a single pixel or a pixel region will simply be \hot"

or \cold," with a sensitivity di�erent from the rest of the chip. The at �eld will take care of

most of these features so it is a good idea to �rst process some test images and examine them

to see if bad regions persist. If they do, you have the choice of �xing them before at-�elding,

or you may correct the already attened data. There are several ways to do this, from setting

constant values in these regions, to interpolation across the smallest dimension, to creating a

mask image which may be applied using image arithmetic. If all images in a set have the same

aws, then a batch job can be used to process through all the images non-interactively.

Cosmic rays are treated di�erently, as they are random events and have obvious pro�les.

Since usually no two images of the same object will have cosmic rays in the same location, com-

bining multiple registered images, using suitable pixel-rejection criteria, will generally remove

these features. When dealing with individual images, cosmic ray features can often be detected

and removed with statistical models. They can also be edited out by hand, which is more time

consuming but may be necessary for cosmic rays with non-standard pro�les, i.e., those that are

trailed.

Spectra may be extracted from 2D images using optimal rejection techniques which correct

for cosmic rays on the spectral pro�le. If background subtraction is being performed, statistical

thresholds can be used to reject deviant data in the background as well. If these options are

used, the need for cosmetic corrections at the end of the processing is often avoided. However,

manual interpolation may also be performed on 1D spectra using splot.

2 About the Tasks

There are many tasks which may be used to clean bad pixels and cosmic rays from images, and

often the same results can be obtained in di�erent ways. Here we give a brief description of each

task to help users decide which are best suited to their needs.

� ccdproc - The image processing task which allows speci�cation of a bad pixel �le. The

parameter �xpix must be turned on, and a bad pixel list speci�ed. Images are corrected

1



in the same manner as in the task �xpix.

� �xpix - An input list of bad pixel positions are read and interpolation across the smallest

dimension of each region speci�ed is performed. This is used on each image individually.

� imarith - Uses image arithmetic to apply a mask image, agging the bad regions by

setting them to 0, a very high, or a very low value.

� cosmicrays - Locates and removes cosmic rays using a statistical model. This may have

trouble distinguishing between multiple close events and stellar objects with small PSFs.

� imsum - Combines multiple images of the same object using sum or average options.

Rejection of low or high valued pixels is used.

� combine, imcombine - Combine multiple images of the same object with many optional

rejection algorithms.

� lineclean - Edits pixels using simple sigma clipping and replaces highly deviant pixels by

the �t.

� imreplace - Replaces all pixels within a certain range of values with a given constant.

� epix - Edits an individual pixel by replacement with supplied value.

� imedit - Edits an image interactively, using the cursor to mark regions, either by inter-

polation or replacement with a speci�ed value.

The �rst two tasks listed above, ccdproc and �xpix, are best used to �x bad pixel regions,

which are usually well known for a particular CCD. These tasks require an input list of bad

regions (assumed the same in every image), which are replaced by interpolation across the

smallest dimension of each region. Replacement of bad regions by a constant may be done using

imreplace, which can be given either the coordinates of a replacement region or a range in pixel

values to be replaced. This should be used with caution since the value range may include pixels

outside the truly bad regions. Image arithmetic (imarith) may be used to apply a mask to a

list of images. This will simply replace the bad regions with a very large number, a very small

number, or zero. All these tasks may be run in batch mode by specifying lists of input images.

The tasks ccdproc and �xpix perform the operation in place, overwriting the input images,

though ccdproc can be set to save the input images using the backup parameter in the ccdred

package parameter set. Section 3.1 goes into more detail about these tasks. See Appendix D for

information on making mask images.

Cosmic rays are random events with distinct pro�les that are usually con�ned to one pixel.

These can be removed by taking multiple exposures of a �eld and combining them, with ap-

propriate rejection criteria, using imsum, combine, or imcombine. Hopefully no two images

taken of the same object will have cosmic rays in the same place, although (by setting the

appropriate parameter) more than one pixel value at any given coordinate may be rejected to

get around this problem. If multiple exposures of an object are not available for use with the

combine tasks, then cosmicrays1 may be used to locate deviant pixels from image statistics.

1This task should be used with great caution on HST images, as stars in these images may be confused with

cosmic rays and be deleted. Instead, the task crrej in the STSDAS.HST CALIB.WFPC package should be used,
though this task is not presented in this document. The STSDAS package is add-on software developed and

distributed by STScI and is available by anonymous ftp to stsci.edu (130.167.1.2).

2



The task lineclean will get rid of highly deviant cosmic rays by specifying an appropriate level

for the rejection limits. This task may remove good data so care should be taken when using it

on 2D images. The above tasks are explained in more detail in Section 3.2.

The imreplace task performs replacement by a constant only. It is non-interactive and

allows regions and/or pixel value ranges to be speci�ed. The epix task works non-interactively,

one pixel at a time, requiring a pixel position and new value for each pixel. It is most useful

for cases in which there are only a few cosmic rays to be removed. The task imedit is an

interactive task which uses the display device and image cursor. The replacement regions may

be set to any radius interactively and the shape also may be changed. The task allows a variety

of replacement algorithms from interpolation to replacement by a constant. The image can be

automatically updated after each operation for inspection purposes. The above tasks may be

used for cosmic ray or bad pixel removal (see Section 3.3).

Spectral images should also be at-�elded before determining whether bad pixels are to be

removed. The tasks best used for pixel �xing are ccdproc and �xpix, which are described in

Section 3.1. This process of removing bad pixels is usually done before extraction, while cosmic

rays may be removed before, during, or after the extraction process. The previously mentioned

tasks can be used on any type of data, while the following are particular to spectral images:

� apall - Uses optimum extraction techniques to remove cosmic rays during the extraction

process.

� scombine - Like the task combine for images, this averages 1D or multispec format

spectra which have been dispersion corrected.

� splot - Used to interactively edit out bad regions in spectra.

The weighted extraction techniques in apall may take care of cosmic rays during the extraction

to 1D spectra simply by setting the appropriate parameters. For multiple spectra taken of an

object, scombine combines input spectra by interpolating them (if necessary) to a common

dispersion sampling, rejecting pixels exceeding speci�ed low and high thresholds. This works on

1D or multispec format spectra, where certain apertures may be speci�ed to be combined into

the �nal output spectrum. The spectra must have dispersion solutions since these are used in

matching the input spectra, rather than their physical or logical pixel coordinates. For editing

individual extracted spectra, an \etch-a-sketch" mode is available in splot. This may be used

for interactive interpolation by eye to replace a cosmic ray or bad pixel region, including poorly

subtracted sky lines, with a straight line de�ned by two positions of the cursor. The image must

then be saved (since it is not done automatically) by replacing the new spectrum in the old

name or renaming the output spectrum. More information and examples of these tasks may be

found in Section 4.

Several additional tasks are mentioned in the Appendices:

� rimcoord - Used to �nd cursor positions in display device.

� imexamine - Used to examine an image and �nd pixel coordinates.

� implot - Used to �nd pixel coordinates without a display device.

� badpiximage - Creates a mask from a bad pixel coordinate �le.

� mkpattern - Creates/modi�es patterns in images or image sections.

3



� imcopy - Used to copy image sections or create pixel list masks.

� imexpr - Allows many enhanced arithmetic image expressions.

� mknoise - Adds noise or cosmic rays to an image or image section.

3 Editing Images

Each of these sections will describe the task and parameters, the input format for �les, and give

at least one good example of its use. Some tasks are better for �xing bad pixels while others

are better at removing cosmic rays. The editing tasks described in the last section are useful for

both applications. We advise you to at least briey glance over each section before deciding on

how to clean your images. Depending on the nature of your data and cleaning needs, the same

operation that would be tedious with one task might be straightforward with another. Cleaning

can be performed at several di�erent stages in the reduction process, and a particular cleaning

operation might be unnecessary or even undesirable depending on how the data will be used

with other tasks. For instance, when combining several images of the same object, it is usually

not necessary to clean cosmic rays from the individual images. Instead, statistical techniques

can be used to reject deviant pixels during the combining process.

Bad regions can also be treated with a pixel \mask". A mask here refers to a map describing

the good and bad regions of an image. For instance, instead of individually editing several

images with the same bad pixel regions, we might instead create a binary mask. This could be

an image with values of \0" in all the bad regions and \1" in all the good regions. Each data

image could then be multiplied by the mask to set all the bad regions to 0. The tasks combine

and imcombine can also use masks for pixel rejection during the combining process (instead of

multiplication, pixels are simply used or not used based on the mask). In this case, the masks

must be of the \pixel list" �le type, designated in IRAF with a \.pl" extension. These \.pl" �les

store all the header and pixel information in one �le, and are more compact and e�cient than

images for cases in which many of the pixels are of the same value (as in a mask). Nonetheless,

these �les can be created, edited, operated upon, graphed, and displayed with the same tasks as

would be used for images. Possible uses of mask images and pixel lists are discussed in sections

3.1.3 and 3.2.3, and tasks useful for creating masks are described in Appendix D.

3.1 Fixing Bad Pixels

Bad pixel regions are unique for a given CCD and do not move around randomly as do cosmic

ray events. These regions may be a pixel, line, column or 2D region of any shape where the

statistics are higher or lower than the overall background statistics. Before using any of the

tasks described below, the images should be at-�eld corrected, since bad lines and columns will

often be �xed by applying the at image. In rare cases, bad regions may be made worse and so

they must be �xed before processing the images. After processing, examining the images with

implot, or display may reveal persistent bad regions, see Appendix C. In this case coordinates

de�ning the edges of the bad regions must be acquired for input to some of the following tasks.

See the help pages for these tasks for more information.

Be warned that the tasks ccdproc and �xpix perform their operations in place, overwriting

the input image. If you wish to attempt a test processing procedure to learn whether pixel �xing

should be performed before at-�elding, you should do it on a test copy of one of the images.

In either case, unless you are already familiar with the cosmetic characteristics of your CCD,

4



you may wish to save local backup copies of your unprocessed data. For ccdproc this may be

done by setting the ccdred package parameter backup to a directory (in which case it should

end with a slash) or a pre�x. Use \epar ccdred" for access to the package parameters.

3.1.1 ccdproc

This task for image processing is found in the IMRED.CCDRED package. It includes an option

to �x bad pixel regions from a speci�ed bad pixel �le de�ning the regions to be �xed. This

works like the task �xpix (see next section) in that both use interpolation across the smallest

dimension of the region speci�ed. The �xpix parameter must be set to yes, and the list of bad

regions speci�ed in a �le, the name of which must be speci�ed in the �x�le parameter. The

format for this table is the �rst and last columns of the bad region followed by the �rst and last

lines of the bad region, i.e., \xbegin xend ybegin yend" separated by spaces not commas. See

Appendix C for information on tasks which may be used to obtain coordinates for the bad pixel

regions.

cl> type images

obj0003

obj0004

obj0005

obj0006

obj0007

obj0008

cl> type badpix

189 189 258 258

480 562 378 378

493 521 390 397

cl> ccdproc @images �xpix=yes �x�le=badpix

In this example, a list of �les is input to the task and processed. The badpix �le in the example

�rst de�nes one individual bad pixel, then a bad line, and then a larger rectangular region. If

the bad region borders the edge of the image then the interpolation is by replication of the �rst

good pixel in the direction of interpolation, otherwise linear interpolation between the bordering

lines or columns is used. Note that if the �les have already been processed without pixel �xing,

rerunning the task as above will �x pixels without it repeating its other operations. If ccdproc

has already been used to �x pixels in a image, the operation will not be done again, even if a

new bad pixel �le is given. If additional bad pixel regions are discovered after ccdproc �xing

has been performed, one must delete the FIXPIX header keyword, or instead use the �xpix

task.

3.1.2 �xpix

This task for �xing bad pixels is found in the PROTO package. It corrects bad pixel regions

by interpolation using an input bad pixel �le de�ning the regions to be �xed. Interpolation is

performed across the smallest dimension of the region speci�ed. Like ccdproc, �xpix overwrites

the input images, but unlike ccdproc it does not include an option to save copies of the originals.

Thus, it is safer to �rst try any new operation on a test image. The name of the image, or a

list of images, to be �xed and the bad pixel table must be speci�ed in the images and badpixels

5



parameters respectively. The format for this bad pixel table is the �rst and last columns of the

bad region followed by the �rst and last lines of the bad region, i.e., \xbegin xend ybegin yend"

separated by spaces not commas. See Appendix C for information on tasks which may be used

to obtain coordinates for the bad pixel regions.

cl> type �xlist

obj0003

obj0004

obj0005

obj0006

obj0007

obj0008

cl> type badpix

189 189 258 258

851 851 274 274

329 329 304 580

480 562 378 378

493 511 610 636

cl> �xpix @�xlist badpix

In this example, a list of �les is input to the task and processed. The badpix �le in the example

�rst de�nes two individual bad pixels, then a bad column, a bad line, and then a larger rect-

angular region. If the bad region borders the edge of the image then the interpolation is by

replication of the �rst good pixel in the direction of interpolation otherwise linear interpolation

between the bordering lines or columns is used. NOTE: There is currently no way to convert a

bad pixel image (see Appendix D) to a �xpix format input list.

3.1.3 imarith

Image arithmetic can be done with imarith in the IMAGES package. The best application

of this task for �xing bad regions is to apply a \mask" to a data image by summation or

multiplication (see beginning of Section 3 for de�nition of a mask). If one �rst creates a binary

mask with values of \0" in all bad regions and \1" in all good regions, image multiplication can

be used to set all \bad" pixels to 0 in a set of images. Optionally, a mask could be created in

which the bad regions are set to a very large positive or negative value and the good regions

set to \0". When this mask is added or subtracted from a data image, the good pixels will be

una�ected while the bad ones will be given large negative or positive values. Such operations

do not \�x" bad pixels in the sense that they make the images look nicer, but instead they

can be used to ag the bad pixels (which may have had reasonable looking data values) for

other tasks. For instance, when images are to be combined using a task such as imcombine,

bad regions may �rst be set to clearly unreasonable values which will then be ignored by the

combining task's threshold options (combine and imcombine can also use pixel list masks to

reject pixels directly, making an imarith step unneccessary|see Section 3.2.3). In this way,

images may be combined even when their bad regions are in di�erent places. Tasks for creating

masks are discussed in Appendix D.

The syntax for imarith is quite intuitive|it looks just like an arithmetic expression, but

without the equals sign:

�

6



cl> imarith obj0005 * mask mobj0005

This example multiplies the object by the mask and renames the output image.

cl> imarith obj0005 + mask obj0005

The mask image is added to the object and the task operates in place by using the same name

for the output image.

cl> imarith @ilist - mask @olist

The last example uses input and output lists of images and subtracts the mask from each image

in the input list. These �les may be identical to perform the arithmetic on the images in place

or di�erent to rename the output images. See the help page for this task for more information.

3.2 Fixing Cosmic Rays

Cosmic rays are random events which can occur at any place on an image. They are not

corrected by at �elding so other methods are used to clean these from an image. Normally a

cosmic ray is seen as one very hot (high valued) pixel in an image though sometimes they do

a�ect several adjacent pixels leaving a streak on the image. Due to their unique characteristics

however, statistics may often be used to clean an image of these blemishes with cosmicrays. If

multiple images were taken of an object, then combining these with some threshold limits will

also remove cosmic rays. The last two sections here describe combining registered (i.e. properly

aligned) images using imsum, imcombine, and combine.

3.2.1 cosmicrays

The cosmicrays task is found in the NOAO.IMRED.CCDRED package. This task searches for

and corrects cosmic rays using selection criteria given by the parameters threshold and uxratio.

The threshold value determines the statistics used to identify deviant pixels; it should be set

to 5 or more times the standard deviation in the background regions. The uxratio parameter

is used to choose which pixels should be corrected; they will be replaced with the mean of

the 4 neighboring pixels. This parameter is the ratio (in percentage units) of the ux of the

neighboring pixels, excluding the brightest neighbor, to that of the target pixel (after background

subtraction). Thus, a value of 5 implies that the target pixel's value must exceed the mean of

its neighbors by a factor of 20 to be deleted. Setting this parameter too high can delete good

data so values between 2-6 are suggested. A bad pixel �le may also be generated by specifying

an output �le name in the badpix parameter. This �le may then be used to create a mask image

using badpiximage (see Appendix D). The tvmark task may be useful for identifying the

points which were corrected.

The following example �rst looks at the statistics of a region of sky in an image, using rough

coordinates of a region free of objects, cosmetic defects, and cosmic rays. (See Appendix C for

information on how the coordinates of such a region can be found with the display device and

the cursor). The threshold is set to 5 times the sky background's standard deviation as given by

the imstatistics task. Note that the verbose parameter in ccdred must be set to yes to get

the output line shown below, though the information can also be found in the log�le and in the

header of the output image.

7



Figure 1: An example of an interactive plot in cosmicrays.

cl> imstat obj0008[107:164,152:227]

# IMAGE NPIX MEAN STDDEV MIN MAX

obj0008[107:164,152:227] 4408 805.8 29.96 702.9 909.3

cl> cosmicrays obj0008 cobj0008 threshold=150 uxratio=3

obj0008 - Examine parameters interactively? (no|yes|NO|YES) (yes): CR

cobj0008: Sep 2 9:40 Threshold=150.0, fluxratio= 3.00, removed=33

Running this task interactively produces a plot of the pixels satisfying the condition set by the

threshold parameter. The plot shows the ux versus the ux ratio in relation to the background

sky. The value of the uxratio parameter divides the plot between bad points to be replaced,

represented by the diagonal crosses, and good points represented by the pluses. This value may

be changed by setting the cursor at a new dividing point and typing a t. Crosses are changed

to good points using u and pluses are deleted using d. The interactive portion of the task is

exited by pressing q, at which time the corrections are made. In Figure 1, we see that there are

several points in the lower right corner with large uxes and small ux ratios. These represent

very strong and extremely sharp features, and all of these are almost certainly cosmic rays.

Thus, in this case, the uxratio should be moved up so that all the points in this corner are

included. Near (104; 6:0) we see four more points which are likely to be cosmic rays, but which

aren't quite as sharp. We could elect to delete these points by hand (by pressing d on each one)

instead of moving the uxratio up (crosses are always deleted and pluses are always ignored,

even if they are on the wrong sides of the line). Most of the points at the top of the plot are

probably stars and should not be corrected. The other points represent weak but sharp features,

and these may be due to weaker cosmic rays or simply pixels which made it above the threshold

due to statistical noise. Thus, if a lot of weak sharp points are appearing, it probably means

the threshold value is set too low. Note that it is possible for a feature to have a negative ux

and/or ux ratio, but that these points will not be visible unless the graph is re-windowed (e.g.

by pressing w a).

8



Another interactive way of using this task is with a \training" option, invoked by setting

train=yes. Cosmicrays will assume the user has already displayed the image in the display

window (ximtool, saoimage, or imtool). An image cursor can then be used to mark features as

cosmic rays with c or stars with s. The task uses this information to set uxratio just high

enough to include all the items labeled as cosmic rays. One may switch to the graphics plot by

pressing g and back to the image display with q. A q from the image display is used to exit

from the interactive portion of the task. To help decide if a point is a cosmic ray or a star,

one may press s in graphics mode to show surface plots (from four di�erent angles) of the point

nearest the cursor. In addition, pressing space in graphics mode will give the pixel coordinates

of a particular point (these options are also available when not using the training option). More

information can be found in the help page for this task.

3.2.2 imsum

Imsum is found in the IMAGES package, and it not only sums images but can average or

median them as well. The options for pixel rejection are not as extensive as those available

in combine or imcombine, however, being limited only to rejection by rank order. This is

done by setting the high and low reject parameters to reject those numbers of pixel values at

each position in the image, not to exceed the number of input images. Setting these to values

less than 1 rejects that percentage of high or low pixels. The task does not check the values

against any statistical threshold, but merely throws out the requested number of pixels at each

position. This means it will eliminate perfectly good points and pixel rejection should only be

used with a large number of images to preserve statistics, though this task is much slower than

the other available choices for such an operation. When only a few images are being combined,

and pixel rejection is needed, it is probably better to apply a statistical rejection algorithm using

combine or imcombine.

New values of certain header parameters may be computed for the combined output image

by specifying them with the hparams parameter. For example, one would usually want to sum

the exposure times in the image headers when the images are being summed. A new title for

the output image must be speci�ed, as this task will not overwrite existing images.

cl> imsum obj008,obj009,obj010,obj011 sumout high rej=1

The �rst example adds 4 images (addition is the default operation for this task), throwing away

the highest valued pixel at each point.

cl> imsum obj008,obj009,obj010,obj011 sumout hparams=\exptime"

This example adds the images with no pixel rejection (by default when parameters are not given)

and also computes a new exposure time for the output image by summing the input values.

cl> imsum @comblist aveout option=average high rej=2

In the last example, an input list of images is used and the task outputs the average, rejecting

the two highest pixel values per position.

By default, imsum will perform the calculations in the highest precision datatype of the

input images. Thus, if several short integer images are being combined the output values can

wrap around. This can be avoided by setting calctype=real.

9



This task is quite outdated and has been largely replaced by combine and imcombine.

Imsum may still be used, however, for simple operations in which only a few images are being

combined and statistical pixel rejection algorithms are not needed. See the help page for this

task for more information about its parameters.

3.2.3 combine and imcombine

The combine task is found in the NOAO.IMRED.CCDRED package, and imcombine is found

in the IMAGES package. These tasks perform the same operations though the parameter lists

are not identical. This is mainly due to the context in which they are used|combine is set

up to do automatic reductions employing a translation �le to check header parameters. But

the most important parameters for combining images are identical in the two tasks. There are

many possible combinations of parameters so several examples will be detailed. We begin with

an explanation of the available pixel rejection algorithms|minmax, ccdclip, crreject, sigclip,

avsigclip, and pclip. This option may be turned o� by setting reject to \none".

The minmax option works much like the high and low rejection in imsum. The number of

low and high pixel values to reject is governed by the parameters nlow and nhigh which is turned

into a fraction depending on the number of input images. This will reject the speci�ed number

of highest and lowest values at each pixel position so it is best to use this option only with a

large number of images.

Better options for removing cosmic rays would be the ccdclip and crreject algorithms which

use the readout noise and gain of the CCD to locate highly deviant values, based on the computed

sigma value. The �rst of these deletes high and low values while the second rejects only high

values. The lsigma and hsigma determine the deviation criteria for rejection. These options

do not require a large number of input images, though they do require knowledge of the noise

statistics of the detector.

The next rejection options are sigclip and avsigclip, which compute the median or average at

each pixel and the standard deviation about this value. Pixels that deviate from the median or

average by more than lsigma or hsigma times the standard deviation are rejected in an iterative

process until no more deviant values are found. Sigclip works best with a large number of input

images (> 10), while avsigclip can work with as few as three images. This is due to the di�erent

ways in which the two algorithms calculate the standard deviation. Sigclip simply computes the

standard deviation based only on data from each pixel position. When using avsigclip, on the

other hand, the standard deviation about the mean or median is assumed to be proportional to

the square root of the mean or median at each point, allowing all data in a line to be used to

determine the standard deviation as a function of the mean or median.

The last option is the pclip algorithm. It is similar to the sigma clipping options, however, the

width of the distribution is characterized by the di�erence in the median value and a speci�ed

percentile pixel value. The percentile pixel is speci�ed by the pclip parameter in the task. The

pixel values are ranked from low to high at a given position in a set of images. The median is

then the middle value for an odd number of inputs or the average of the two middle values for

an even number. If pclip is a positive or negative integer value, then the percentile pixel is that

number of input values above or below the median value respectively. If pclip is a positive or

negative value between -1 and 1 then the percentage of the pixels above or below the median

value is used, i.e., for pclip = -0.5, with 9 input values, there would be 4 pixel values below

the median; 50% of 4 pixels is 2, which is the third pixel value in the rank. The di�erence

between the median and the percentile value is multiplied by the lsigma and hsigma parameters

10



which set the lower and upper rejection thresholds. This algorithm is good at removing very

small excursions, such as low level wings of stars when several disregistered images are being

combined to produce a sky at. Each of the rejection options have associated parameters which

are explained in more detail in Appendix A.

Threshold rejection is governed by the lthreshold and hthreshold parameters, which specify

the lowest and highest good data values for pixels in each image. These thresholds are applied

before all other rejection and combining operations. Threshold rejection is not performed when

both parameters are set to \INDEF".

Pixel masks may be applied to each image, before the threshold or rejection processes take

place. The mask �les must be of the \pixel list" �le type, which IRAF designates with a \.pl"

extension (see beginning of Section 3 for the de�nitions of masks and pixel list �les). Pixel

masks are applied by setting the masktype and maskvalue parameters to specify the type of

mask being used. For instance, if the mask is such that good pixels are marked with 0 and bad

pixels marked with 1 (this logic is often used, as it makes for the most compact pixel list mask

�les), the appropriate values would be masktype=goodvalue and maskvalue=0 (or, equivalently,

masktype=badvalue, maskvalue=1). The mask �le name must be speci�ed in the header of its

associated image under the BPM keyword, which may be added to the header using hedit. If

no mask is associated with an image, it will be treated as if it had a mask will all values being

zero. Thus, if combining a large number of images, only a few of which need masks, it is best to

de�ne 0 as the good value to avoid having entire good images rejected. Tasks useful for creating

pixel mask �les are described in Appendix D. Whether or not masks are being used for the input

images, an output pixel list �le, a map of the number of pixels rejected at each position, can be

produced by setting the pl�le parameter to a �le name. This �le name is added to the output

image header under the keyword BPM.

For cases in which the input images do not have their objects at exactly the same pixel

positions, there is an option for o�setting images which does not require registration and saves

a lot of processing time. The o�set table is given one object per line with the x and y shifts

separated by a space. These shifts may be speci�ed in relation to one of the images or to some

arbitrary common point. The reference image shift would be \0.0 0.0" and negative values

are allowed. This option should be used only when the images have large overlapping regions.

The use of imcombine for mosaicing is explained in more detail in another document (see

Appendix F).

Average and median are the choices for the combine parameter. This is the last operation

performed on the input images, after o�setting, masking, thresholding, and rejection. In some

cases, the number of pixel values going into the average or median may be lower than the nkeep

parameter, resulting in the inclusion of those rejected pixel values with the lowest residuals

calculated by the rejection algorithm. For example, if 2 of 9 pixels are deleted using the hthreshold

parameter and 4 of the remaining 7 are thrown away by the rejection option used, then 3 pixels

are checked against nkeep. If nkeep is set to 4, then the pixel value with the lowest residual from

the rejection routine will be added back in to be combined. Pixels rejected by the thresholding

are not a�ected by the nkeep parameter. Each of these examples uses the default combine

parameter value of average.

cl> combine obj0002,obj0003,obj0004,obj0005 out reject=none n

hthreshold=28000

This example uses the hthreshold to through out pixels above the given value for the four input

images. All the other examples below use the input list of 9 images called clist.

11



cl> type clist

obj0003

obj0004

obj0005

obj0006

obj0007

obj0008

obj0009

obj0010

obj0011

cl> imcombine @clist comb reject=minmax nlow=0 nhigh=2

The minmax option is used to reject the highest 2 values at each pixel position.

cl> combine @clist comb reject=crreject rdnoise=3.6 gain=5.8

This example is using the cosmic ray rejection which requires the noise characteristics of the

detector, the gain and rdnoise. The default rejection thresholds of 3.0 sigma are used.

cl> imcombine @clist comb reject=avsigclip nkeep=5 lsigma=2.5 hsigma=2.5

The last example uses the average sigma clipping algorithm and allows rejection of no more than

4 pixels at each position. If the noise parameters for the CCD are well-known then crreject

may be used. If the noise parameters are not well-known and only a few images were taken,

then avsigclip should be used. More information about this task is found in the help page.

3.2.4 lineclean

The task lineclean is found in the IMAGES package. The task �ts a function to an image one

line at a time and locates highly deviant pixels which are replaced by the �t. The shape of the

function may be highly variable in the image however, and parameters resulting in a good �t to

one line may delete good data from another line. This task should be used with great caution

for this reason, and the task may be run interactively to examine the �t for many image lines.

There is a choice of four function types for the �t:

� Legendre - polynomial of the speci�ed order.

� Chebyshev - polynomial of the speci�ed order.

� Spline1 - linear spline with number of pieces set by order.

� Spline3 - cubic spline with number of pieces set by order.

(Remember that a function's order in IRAF refers to the number of degrees of freedom, not

the value of the highest exponent. Order=2, for the polynomial �ts thus gives a straight line,

not a parabola.) The low reject and high reject parameters set the rejection levels in units of

the residual sigma. These values must be chosen carefully, and can be determined by estimating

the level of the highest good value in the image compared with the average sky level.

cl> lineclean obj0003 cl0003 function=chebyshev order=4 low=3 high=3

12



This example uses a 4th order chebyshev function and sets the rejection level to 3 sigma above

and below the function �t. It will prompt for a line to begin the �tting, and the user may type

in the line number of interest and change the parameters accordingly. Some of the interactive

commands are:

� f - Recalculates the �t.

� r - Redraws the graph.

� ? - Shows the help menu, exited using q.

� :function (new function) - Changes the function type for the �t.

� :order # - Changes the order or number of spline pieces.

� :niterate # - Changes the number of rejection iterations.

The interactive �tting is exited using q which then prompts for the next line to be �t. When

the parameters have been set properly, hitting a CR without a number will then �t the entire

image line by line, using the last set of �tting parameters, and output the cleaned image. See

the help page for this task for more information.

3.3 Fixing Images by Hand

This section describes several tasks used interactively or non-interactively to �x bad pixels and

cosmic rays. In the non-interactive cases, the bad regions are input one at a time or in lists.

The �rst two sections describe tasks which are non-interactive. The last section describes the

task imedit which may be used either interactively or non-interactively. See Appendix C for

more information on obtaining pixel positions.

3.3.1 imreplace

The imreplace task is found in the PROTO package. It simply replaces the pixel value of a

given region speci�ed by an image section and/or a range in current values. The replacement

value must be speci�ed and an imaginary part for a complex number may be incorporated.

The range to be replaced is given with the lower and upper parameters, which may be set to

\INDEF" to set no lower or upper bound. The replacement will be performed over the entire

image if an image section is not speci�ed.

cl> imreplace obj0003 1.0 lower=32000.0 upper=INDEF

cl> imreplace obj0003 1.0 lower=INDEF upper=-10.0

This example replaces all pixels in the image with values below -10.0 and above 32000.0 (the

saturation level, for example) with the value 1.0.

cl> imstat obj0003[1:50,1:50]

# IMAGE NPIX MEAN STDDEV MIN MAX

obj0003[1:50,1:50] 2500 39.22 2.424 32. 92.

cl> imreplace obj0003[1:145,50:90] 39.22 lower=32000.0 upper=INDEF

cl> imreplace obj0003[1:145,50:90] 39.22 lower=INDEF upper=0.0

13



Here the mean in the background of the image is calculated and used as the replacement value.

An image section is speci�ed for replacement of values below 0.0 and above the saturation level.

This task is also useful for creating mask images; see Appendix D for more information.

3.3.2 epix

The epix task is found in the PROTO package in IRAF. This task can be used to edit a single

pixel at a time, for cases in which an image has only a few cosmic rays to be removed. Procedures

to determine pixel coordinates are explained in Appendix C. The parameter edit image must be

set to yes in order to replace the speci�ed pixel with the new value. The following examples

replace the speci�ed pixel with the value 0.0:

cl> epix obj0004 345 267 0.0

cl> epix obj0004 678 465 0.0

cl> epix obj0004 723 682 0.0

Image statistics (imstatistics) may �rst be used on a section of the image to determine the

replacement value. Or, if new value is not speci�ed on the command line, the task will compute

the mean of the surrounding 8 pixels before prompting for the replacement value:

cl> epix obj0004 463 142

462 463 464

141 76.5472 74.9697 83.7819

142 74.201 3741.14 55.4181

143 34.7398 93.9899 85.8516

median 76.54721, mean 72.43739, sigma 18.93725, sample 8 pixels

new value for pixel (0.): 72.4374

See the help page for more information on this task.

3.3.3 imedit

The imedit task is found in the IMAGES.TV package. This task can be used to edit various

types of regions of an image or to obtain statistics. Images may be edited interactively or non-

interactively using a list of positions and commands. The images must be two dimensional.

There are a number of replacement algorithms from interpolation, to replacement by a constant

value, to replacing one region in a given aperture by another. An input list of images with

a corresponding output list may be used, or one may simply edit one image at a time. If no

output list is speci�ed, then the modi�ed images are saved under their old name. A square or

circular aperture may be used and the radius set for the size of the region to be edited. The four

parameters bu�er, width, xorder, and yorder are used in the background replacement algorithm.

If replacement by a constant is to be used, then the parameter value must be speci�ed. The

cursor parameter gives the name of a �le to control non-interactive editing. It can contain either

positions and editing keystrokes (a list appears at the end of this section), or bad regions in the

�xpix format:

cl> type badpix

103 105 206 265

387 387 658 750

14



568 568 480 480

cl> imedit @inlist @outlist cursor=badpix �xpix=yes display=no

In the example above, the display option is set to no for non-interactive use of imedit and

input and output lists are given for the images. The pixels are �xed by interpolation across the

smallest dimension of the region speci�ed as in the task �xpix.

The cursor �le can instead give positions and the editing keys that would be used in inter-

active mode. The format for each line is �rst the x and y positions of the cursor, then a WCS

coordinate (not used in this application, but some integer value in this �eld is required), followed

by the editing keystroke. Those commands that require two cursor positions will also require

two lines in the �le.

cl> type pixlist

240 368 101 b

284 134 101 a

292 147 101 a

380 456 101 l

380 512 101 l

cl> imedit obj0003 edobj0003 cursor=pixlist display-

In this example, three regions are modi�ed non-interactively using the editing commands which

terminate each line. First is replacement of an aperture by the background b, then replacement

of a rectangular region by the background a, and �nally interpolation across a line l. If no

editing command is given on a line, the task will perform the operation given by the default

parameter.

To run the task interactively, use:

cl> imedit obj0003 edobj0003 display+ autodisplay+ radius=6

The autodisplay option shows the image after each modi�cation. The following commands may

be used in interactive mode:

� + - Increase radius by one.

� - - Decrease radius by one.

� a - Background values replace a rectangular region marked by opposite corners.

� b - Background values replace the aperture de�ned by aperture and radius.

� c - Interpolation across the columns marked.

� d - Constant value replaces a rectangular region marked by opposite corners

� e - Constant value replaces the aperture de�ned by aperture and radius.

� f - Interpolation across the smallest dimension replaces the region marked by opposite

corners.

� g - Plots a surface graph.

� i - Starts over without saving changes for the current image.

15



� l - Interpolation across the lines marked.

� m - Replaces one aperture region with another aperture region.

� n - Adds the values of one aperture region to another region.

� p - Prints the pixel values and statistics for a box centered on cursor.

� q - Quits interactive mode and saves the modi�ed image.

� s - Surface plot at the position of the cursor.

� t - Toggles between search for the maximum (positive) or minimum (negative) valued

pixels in the search radius.

� u - Undo the last modi�cation to the image. This is a toggle switch.

� space bar - Statistics for the region around the cursor.

� ? - The help page is shown for the interactive commands, use a `q' to get back to interactive

mode.

The task parameters may be edited while in interactive mode using the : commands, for example

:radius 4. The + and - can be used to change the radius interactively. Interactive mode is

exited using a q. These commands are all explained in more detail in the help page for this task.

4 Fixing Spectral Data

Spectral data should be at-�elded in a similar fashion as direct imaging, except for �ber data for

which the at-�elding is done after extraction. This processing may take care of the bad regions,

though cosmic rays may still be a problem. Using optimal extraction algorithms with apall

may remove most cosmic rays and perhaps bad pixels. Once spectra are extracted, however,

combining spectra with scombine may take care of any residual cosmic rays and bad pixels, in

cases for which multiple spectra were taken of an object. For individual spectra, there is also

the option of removing bad pixels by hand using splot. These tasks are described in the next

three sections.

4.1 apall

The apall task is found in NOAO.TWODSPEC.APEXTRACT and all the spectral packages

in NOAO.IMRED, including KPNOSLIT, SPECRED, ECHELLE and others. Extraction of

1D spectra from 2D spectral images can be performed using optimal extraction techniques to

distinguish between emission lines and cosmic rays. The cosmic rays are then rejected from the

summation of the extraction window. Also, background or sky subtraction parameters may be

set to reject cosmic rays in the background computation.

Apall has all the parameters required to de�ne the extraction process for any kind of 2D

spectral image. The boolean parameters at the beginning of the parameter list turn on and o�

the operations to be performed on the input images. A bright standard star may be traced and

used as the reference for fainter program objects. The task will interactively extract spectra or

run in batch on an input list of objects. The task could be used once interactively to de�ne

16



apertures, and again non-interactively for the actual extractions, or a reference spectrum may

be speci�ed for a fully non-interactive extraction.

Background sky lines may be removed by setting the background parameter to �t . This must

be set to none, however, for comparison lamp extractions. The parameters beginning with b are

used to govern the background subtraction, with the most commonly changed parameters being

b sample, b naverage, and b niterate. B sample de�nes the the background aperture relative to

the center of the object aperture, and b naverage gives the number of pixels to be averaged or

medianed to produce data for a background �tting function (a constant by default). If b naverage

is positive, that number of pixels will be averaged; if negative, that number (in absolute value)

will be medianed. Thus, if the background aperture is set to include 12 points on either side of

the pro�le, a value of -3 will median the pixels in groups of three and produce 8 data values for

the background �tting function. By default, these values would be averaged to determine the

background value for that line or column perpendicular to the dispersion direction. A value of

b naverage=-3 will take care of single-pixel cosmic ray events; for CCDs with larger cosmic ray

pro�les, the magnitude can be increased to median more pixels. In addition, statistical rejection

of the data points used in the background �tting function can be performed by setting b niterate

to the desired number of rejection iterations (0 by default). If this is done for the example above,

the 8 data points (each a median of 3 pixels) would each be compared to their average, and

any deviating by 3 sigma (default) would be rejected. This process would then repeat until no

rejections occur or the number of requested rejection iterations is reached.

In addition to removing cosmic rays in the sky background, pixel cleaning can be performed

on the object pro�le itself. The weights parameter should be set to variance and clean set to

yes. This algorithm, described by Keith Horne (PASP, 1986, 98, 609), uses the noise statistics

of the CCD to detect deviant pixels in the pro�le. The parameters saturation, readnoise, gain,

lsigma, and usigma are also used. Saturation may be set to the saturation limit of the CCD

minus the DC-o�set in ADUs, or it may be set to just above the largest real data value, allowing

it to act as a threshold. If the readnoise and gain are not available, they may be calculated with

the �ndgain task (in the NPROTO package) which uses pairs of raw biases and ats. The sigma

parameters set the high and low rejection levels for deviant pixel values.

cl> apall spec0020 reference=spec0013 interactive- trace- recenter+ n

resize+ weights=variance clean+ readnoise=5. gain=1.8

This example non-interactively extracts a program object using a well de�ned star as the trace

reference. The center of the object pro�le is automatically found and resized assuming its

position on the slit was close to that of the reference star. The output spectrum will be called

spec0020.0001 for onedspec format or spec0020.ms for multispec format. At each line or column

perpendicular to the dispersion, the pro�le will be compared to an averaged pro�le and deviant

pixels will be replaced by the �t. One must be careful to avoid rejecting good data, which can

happen if the noise and rejection parameters are not properly set. One may rerun the task with

clean=no and compare the output to make sure only bad data is being a�ected. Alternately,

the task may be run with the extras parameter set to yes, which tells the task to also extract

the raw spectrum (what would be output if simple pro�le summation was used with no cleaning

or weighting), the subtracted sky spectrum, and the variance spectrum. These are extracted to

the third dimension of the output image, and can be inspected with splot (will prompt for the

band number). Help on the cleaning algorithms may be found in the help pages for this task,

apsum, appro�les, and apvariance. Detailed instructions for extraction using this technique

17



are given in the manual \A User's Guide to Reducing Slit Spectra with IRAF", by Phil Massey,

Frank Valdes, and Jeannette Barnes (see Appendix F).

4.2 scombine

The task scombine is found in NOAO.ONEDSPEC and many of the spectral packages in

IMRED such as KPNOSLIT, SPECRED, ECHELLE, and others. Combining spectra is done

using pixels at common dispersion coordinates rather than physical or logical pixel coordinates.

For spectra with di�erent wavelength coverage and/or wavelength dispersions, interpolation is

used to set the wavelength sampling. The �rst spectrum in an input list of spectra is used

to de�ne the dispersion sampling for the output spectrum if the �rst parameter is set to yes.

The starting and ending wavelength, dispersion, and number of pixels (w1, w2, dw, and nw

respectively) may be speci�ed explicitly as well, in which case �rst should be set to no. The

resulting image inherits the header parameters from the �rst input image.

Speci�c apertures may be speci�ed for multispec format spectra. All the apertures are

combined by setting this parameter to a blank value. The group parameter de�nes the type of

operation to be performed.

� all - Combines all the input spectra into one output spectrum.

� images - Combines multispec format echelle spectra into one 1D output spectrum per

input echelle spectrum.

� apertures - Combines the same aperture from all the input multispec format images into

one output multispec format spectrum.

The spectra are combined using average,median, or sum, speci�ed by the combine parameter.

The rejection options and their governing parameters are the same as those for the combine

and imcombine tasks, see Section 3.2.3 and Appendix A for more information about these

options.

Onedspec format spectra may be combined using the following:

cl> imheader obj*.imh

obj0050.0001.imh[2001][real]: m31 1

obj0051.0001.imh[2001][real]: m31 2

obj0052.0001.imh[2001][real]: m31 3

cl> scombine obj005*.0001.imh comb group=all combine=average n

reject=minmax

The 3 spectra are averaged throwing away high and low pixel values determined by the nlow,

nhigh, and nkeep parameters, and the output is written to the image comb. In this example,

nlow and nhigh are at their default values of 1, so that the operation is the same as a median

(since there are only three input images). This is sometimes desired, but it does throw away

good pixels as well as bad ones, and an avsigclip algorithm might alternately be used to reject

bad pixels while keeping as many good ones as possible. Echelle spectra in multispec format

may be combined into one long spectrum using the following:

cl> imheader @inlist

obj0001.ec.imh[256,9][real]: m31 1

18



obj0002.ec.imh[256,9][real]: m31 2

cl> type @outlist

obj001.1d.imh

obj002.1d.imh

cl> scombine @inlist @outlist apertures=\" group=images

In this case, inlist is a list of the two images used in the example. The outlist contains the same

number of entries but using di�erent names to be used for the output spectrum. Any regions

without overlapping pixel values will be set to the value speci�ed by the blank parameter. For

multispec format spectra where the aperture in one image corresponds to the same aperture in

several others, use the apertures option for group:

cl> imheader @inlist

obj0100.ms.imh[2001,93][real]: m31 1

obj0101.ms.imh[2001,93][real]: m31 2

obj0102.ms.imh[2001,93][real]: m31 3

cl> scombine @inlist comb.ms apertures=1-5,13,18,38,45,52 group=apertures

Here only apertures 1 through 5, 13, 18, 38, 45, and 52 are being combined from each input

image. The output image comb.ms.imh is written in multispec format containing only those

apertures which have been combined. The input here is in the form of a list, but the output is

only one image.

When wishing to combine several apertures of one multispec format image into one spectrum,

use the following:

cl> scombine obj0100.ms comb.ms apertures=1-5,13,18,38,45,52 group=all

Check the help page for this task for more information and examples.

4.3 splot

The task splot can be found in all the spectral packages in NOAO.IMRED, including ONED-

SPEC, KPNOSLIT, SPECRED, and ECHELLE as well as others. Removing bad sky line

subtractions or cosmic rays not detected by the cleaning extraction may be done using interac-

tive mode with the j or x command. Several spectra of the same star may be graphed in order

to �nd those bad sky lines or cosmic rays.

The input images may be done individually or an input list may be speci�ed. Successive

images are plotted following each q cursor command. Two dimensional images request the line

or band to be graphed.

cl> splot obj0006.0001

A spectrum may be overdrawn by another spectrum by typing an o followed by a g or a #.

Type in the name of the next spectrum to be graphed for the �rst option or the number of the

order in the multispec format image. The last image plotted is the active one, so the last one

overplotted should be the one with the bad pixels to be �xed. These are found by comparing

the spectra plotted in this fashion. Regions may be enlarged using the Z command. The P

command may be used to pan out from the zoomed region. Typing 0 will undo any zooms or

pans, and r will redraw the last spectrum called via the g or # command. A 2D spectrum in

echelle or multispec format may be input as follows:

19



cl> splot obj0006.ms options=\auto,xydraw"

Image line/aperture to plot (0:) (1): 5

This will bring up the 5th order in an extracted 2D echelle spectrum, or the 5th object in a

2D multispec format spectrum. The options speci�ed set the task to replot the graph after

certain changes are made (auto|this default option does not force a replot when editing, but

for several other options such as smoothing with a boxcar �t), and set the mode of use for the

x interactive command (xydraw). The xydraw option sets the x command such that a straight

line is drawn between the two positions marked with the cursor position, using both x and y

coordinates. Without this set, the x command interpolates between the current pixel y values

of the two marked positions. Any of the following commands may be used in interactive mode:

� g - Plot another spectrum.

� i - Write current spectrum as new image.

� j - Set the value of the current pixel to the y cursor position.

� o - Overplot next requested line/band (#) or spectrum (g).

� q - Quits interactive mode and saves the modi�ed image.

� x - Interpolates or draws straight lines between positions marked.

� ? - The help page is shown for the interactive commands, use a q to get back to interactive

mode.

� Z - Zoom in on a region.

� 0 - Pan back from a zoom, preserving overplots.

� # - Plots a di�erent line in multi-aperture spectra or 2D images.

� :xydraw [yes/no] - De�nes the mode of use for the x command.

There are many more options which may be used interactively however, here we have described

only those which pertain to the operation required. These options are all explained in more

detail in the help page for this task.

A Some Important Parameters

A.1 Rejection Option Associated Parameters (combine, imcombine, & scom-

bine)

The rejection options are discussed in detail in Section 3.2.3. Each of the rejection algorithms

require that other parameters be de�ned. Table 1 lists the reject options with a complete list of

associated task parameters.

20



Table 1
Parameters Used by the Reject Options

sigclip

minmax ccdclip crreject avsigclip pclip

nlow mclip mclip mclip pclip

nhigh nkeep nkeep nkeep nkeep

rdnoise rdnoise lsigma lsigma

gain gain hsigma hsigma

snoise snoise sigscale

lsigma hsigma

hsigma sigscale

sigscale

These parameters are common to all the following tasks: combine, imcombine, and scom-

bine. A brief description of each follows:

� nlow Number of low pixel values to reject.

� nhigh Number of high pixel values to reject.

� nkeep Minimum number of pixels to keep (positive) or the maximum number of pixels to

reject (negative).

� mclip Use the median value as the estimate of the true intensity when set to \yes" oth-

erwise use the average.

� lsigma The lower threshold for sigma rejection of pixel values.

� hsigma The upper threshold for sigma rejection of pixel values.

� rdnoise The value of the readout noise in electrons for the detector used.

� gain The value of the gain in electrons per analog to digital unit (ADU) used for the

observations.

� snoise The sensitivity noise expressed as a fraction.

� sigscale Determines if Poisson corrections are necessary for unscaled images.

� pclip Selects the percentile pixel or fraction of pixels to be used with lsigma and hsigma

to determine the sigma clipping thresholds.

B Technical Issues and Problems

There are many ways of manipulating images in IRAF and therefore problems may arise. Here

we try to highlight some things to keep in mind while editing images.

� Pixel values in images should not be set to a value of \INDEF". IRAF does not work well

with unde�ned pixel values.

21



� Fixing pixels in the background around regions where photometry is to be performed is

not a good idea. Since the photometry routines have rejection options, it is best not to �x

these unless statistical tests are also performed.

� Images should be registered before being masked. The interpolation routines will soften

the edges of regions which have been set to very high or very low values with a mask.

� Images which have stars with small PSFs should not be corrected using the task cosmi-

crays. The stars will be confused with cosmic rays and be deleted from the image. The

task crrej found in the STSDAS add-on package should be used instead.

� The lineclean task should be used with caution when �tting 2D images. A good �t to

one line may result in the deletion of good data points in another line.

� One should never assume that IRAF will automatically know the di�erence between good

and bad data. The rejection algorithms will simply apply whatever statistical model you

ask; it is the user's responsibility to determine the parameters appropriate for their data.

C Getting Bad Pixel and Cosmic Ray Positions

There are several ways of obtaining coordinate positions of bad pixel regions in an image. If the

coordinates of the display window are trustworthy, then simply displaying an image and moving

the cursor to the lower left and upper right corners of the bad regions will give the coordinates.

Coordinates from the imtool device in SunView are brought up in the lower right corner by

pressing the F6 key within the window. The coordinate box is activated in the ximtool window

by releasing on Coords box in the options menu or choosing the Coords Box in the control

panel options in the lower right side of the panel. SAOimage displays the coordinates at the

upper right. The coordinates may not always be exact but the edge of a bad region may be

determined to within a pixel.

Using the display device, the task rimcursor could also be to determine image coordinates.

Unlike the sophisticated centering algorithms used by other tasks, rimcursor simply reads the

position of the image cursor, without calculating the center. The position is good to only .5

pixels in x and y. This is a good method for getting quick positions. The positions are output to

the terminal but they can also be redirected to a �le. An output �le will look like the following:

cl> type rimcoord

379.5 66.5 101 n040

347.5 188.5 101 n040

224.5 130.5 101 n040

385.5 254.5 101 n040

405. 273.75 101 n040

217.75 439. 101 n040

This �le may have to be edited for use as input to other tasks. The output formats for the

coordinates may also be changed by setting wxformat and wyformat. See the help page for this

task for more information about these parameters. To run rimcursor the image must �rst be

displayed in the display window:

22



cl> display obj0003 1

cl> rimcursor obj0003

or

cl> rimcursor obj0003 > coords1

The cursor will move to the display window ready for interactive commands when rimcursor

is executed. Move the cursor to the position of an object and hit any key. To exit this task

once coordinates have been obtained for all the regions, type ^ d or ^ z where the ^ character

stands for the \control" key|press both at the same time. The default coordinate system

is logical or pixel units, however this may be changed to obtain coordinates in another WCS

(world coordinate system) by setting the parameter called wcs to some other coordinate system

value. Note that there is currently a bug in IRAF's cursor readout that can cause the values

to sometimes be o� by one pixel. This only happens in image dimensions which are of an

odd number of pixels, so this problem can be avoided by displaying image sections with even

numbers of pixels in each dimension. Alternately, one may use coordinates determined from

graphics plots, which are una�ected by this problem.

Another very useful task for �nding coordinates is imexamine, found in the IMAGES.TV

package. It can be used in interactive mode with the image display and graphics options. The

operation of �nding the object centers is governed by two parameter sets for this task, the imex-

amine parameters themselves and the rimexam pset2 parameters. The standard imexamine

parameters set up the environment for executing the task, while the rimexam parameters spec-

ify the options for the use of the r and a commands used to measure centers. Line plots l and

column plots c, with speci�cations set by the limexam and cimexam psets, may also be used

to �nd and identify the edges of bad regions. Output by default goes to the terminal screen so

the keeplog parameter in imexamine should be set to yes and the log�le name speci�ed if you

want to save the output in a �le. This logging facility can be turned on and o� interactively.

Subsequent executions of this task will reopen the log�le and append to the named �le.

The centering parameter is found in the rimexam pset and must be set to yes. The cursor

position is used as the initial point for computing the center moments of the marginal distri-

butions in x and y. The marginal distributions are obtained from a square aperture with edge

dimensions of twice the aperture radius parameter. Only pixel values above the mean are used

in the computation and another iteration is done if the central moments are in a di�erent pixel

than that used for extracting the marginal distributions. This may be used for cosmic rays but

may not work well on bad pixel regions.

The cursor commands which are most important are:

� a - centers and performs circular aperture photometry for a star.

� c - plot the column under the cursor.

� g - move to the graphics cursor from the image display.

� i - move to the image cursor from the graphics window.

� l - plot the line under the cursor.

� m - pixel statistics in cursor region.

2Psets are parameter sets within parameter sets. Psets provide a way to group a long list of parameters into
smaller, more manageable parameter lists that can then be shared by several tasks in a package.

23



� r - the a key plus plotting the radial pro�le of the star.

� s - show a surface plot of region centered on the cursor.

� w - toggle writing to the output �le.

� x - print coordinates

� z - print a table of pixel values for region near cursor.

� C - position of the cursor in the graphics window.

� Z - zoom in the graphics window.

� 0 - unzoom in the graphics window.

� ? - print help menu.

� q - quit the task.

In interactive mode, any of these commands may be used. Running the task causes a circular

cursor to appear in the display window. Use of the c command will plot the column at the

position of the cursor. Typing g will move the interactive cursor to the graphics window. Now

using the C command will give the position of the cursor in the graphics window. Interactive

mode is exited using q.

In some instances, the user may need to �nd pixel coordinates without the use of an image

display device. This can be done using implot, though �nding bad regions may be di�cult if

you don't already have some idea of where to look. This task will allow the inspection of line

and column plots similar to those obtainable with imexamine. The most useful options are:

� c - plot the column corresponding to the cursor position.

� e - expand plot by marking corners of viewport.

� j - move down in image (step number of lines of columns).

� k - move up in image (step number of lines of columns).

� l - plot the line corresponding to the cursor position.

� C - show coordinates of cursor.

� space bar - show coordinates of cursor, plus graph value at cursor x.

� ? - print help menu for task.

� :c # - plot column number #.

� :l # - plot line number #.

� :x x1 x2 - change range of x-axis in current plot.

� :x - restore displaying of full x-axis range.

� :step # - reset step parameter to new #.

24



� q - quit the task.

Running cosmicrays and specifying a badpix �le will create a list of the cosmic-ray positions

in the image being �xed. This output list may then be used with badpiximage to create a bad

pixel mask. It would not be good at �nding cosmic rays which produce streaks and it would not

identify bad pixel regions, however.

D Useful Tasks for Making Masks

The following tasks may be used to create mask �les to be used with imarith or imcombine.

Values for the mask may be set to 0.0 and 1.0 or to very large positive or negative values to set

bad regions to highly deviant values. The task mkpattern may be used to create a mask or

create an image to be edited further. The task imreplace is described in Section 3.3.1, however,

it is also useful in creating masks. Badpiximage works with the table formatted for use with

the �xpix task. Files of a special type called \pixel list �les" may be created using a simple

imcopy of an image and specifying an output image name with a \.pl" extension.

D.1 mkpattern

The mkpattern task is found in the NOAO.ARTDATA package. This task creates an image

of a size determined from the input dimensions speci�ed by ndims, ncols and nrows. Higher

dimension images may also be created. If the input image already exists, the requested pattern

may be substituted for, added to, or multiplied by a given image section. The various pattern

options are:

� constant - Set the image values to a constant value speci�ed by v1.

� grid - A grid starting with the �rst pixel and going in steps of the pattern size with value

v2. A minimum grid size of 2 is enforced.

� checker - A checkerboard with squares of the pattern size alternating between values v1

and v2 starting with v1.

� coordinates - Each pixel is numbered sequentially starting with 1 with the column di-

mension varying fastest.

� slope - A sloped plane starting with value v1 for the �rst pixel and value v2 for the last

pixel in one or two dimensions.

� square - A checkerboard pattern in which the size of the squares begins with the pattern

size and grow as the square of the coordinate.

The pattern size is speci�ed by the parameter size. The values for the pattern are also

speci�ed in v1 and v2. Sections of an image may also be edited by specifying a region to be

edited. Certain header parameters may be set also such as title and pixtype.

cl> mkpattern blank ncols=800 nlines=800

This example creates a blank image of the given size. This image could then be edited with

epix, imreplace, imedit, or mkpattern itself to create a bad pixel mask image.

25



cl> mkpattern check pattern=checker option=add v1=0 v2=1.0 size=70

This example adds a checkerboard pattern, with 70 pixel wide squares with 0.0 and 1.0 being the

alternating values, to an existing image, or creates a 512x512 checkerboard image if the input

image does not already exist. Mkpattern may also be used to modify a pattern in a section of

an existing image:

cl> mkpattern obj0005[245:360,300:400] pattern=constant option=replace

Pixels in the region speci�ed will be replaced by the constant value in the v1 parameter. Check

the help page for this task for more information.

D.2 imreplace

The imreplace task is found in the PROTO package. This simply replaces the pixel values of a

given region, speci�ed by an image section, and/or a range in current values. The replacement

value must be speci�ed and an imaginary part for a complex number may be incorporated. All

values between the values speci�ed in lower and upper will be replaced if the whole image is

de�ned. If for example an image has peak counts in the objects at 10000 ADU, but cosmic rays

which peak at 24000 ADU, a replacement of cosmic rays can be done using:

cl> imreplace obj0005 1.0 lower=11000.0 upper=30000

This will set all pixels in the image with current values between 11000 and 30000 to a value of

1.0. However, this wouldn't handle any weaker cosmic ray features.

To create a pixel list �le mask, one may begin with a blank �le, all of whose pixels are 0.0,

and edit bad pixel regions explicitly:

cl> mkpattern mask.pl ncols=800 nlines=800

cl> imreplace mask.pl[356:450,689:693] 1.0 lower=INDEF upper=INDEF

Notice that the tasks can create and edit pixel list �les as well as images. Of course, if we had

desired an image we would have left o� the explicit \.pl" extensions. Making a detailed bad

pixel mask will take time to create, but once it is ready it may be applied to all the images

taken with that CCD, since bad regions do not usually jump around. Creating a mask using

the badpix �le format used by the task �xpix is described in the next section.

D.3 badpiximage

The task badpiximage is found in the IMRED.CCDRED package. The bad pixel list used for

the task �xpix may be input to create a mask image to be applied to the program images. The

format for this table is the �rst and last columns of the bad region followed by the �rst and

last lines of the bad region, i.e., \xbegin xend ybegin yend" separated by spaces not commas.

There are several formats for the output mask. A standard IRAF image may be created for use

with the various image arithmetic tasks. A mask image in a pixel list format �le having a \.pl"

extension is another option. If the image parameter is a name with the \.pl" extension, then

the output is a pixel list, and an IRAF image is created if the \.pl" extension is not speci�ed.

cl> badpiximage badpix obj0003 obj3mask.pl goodvalue=0 badvalue=1

cl> hedit obj0003 BPM \obj3mask.pl" add+ verify+

26



A pixel list format �le is created setting the good values in the image mask to 0 and the bad

regions speci�ed in the badpix �le to 1. The pixel mask image name is added to the header of

the corresponding image to be applied when using tasks such as combine and imcombine (see

Section 3.2.3).

cl> badpiximage badpix obj0003 obj3mask goodvalue=0.0 badvalue=30000

An image is created with good pixel values set to 0 and bad pixel values set to 30000. This

image may then be added to an image to set the bad regions to very large numbers using the

imarith task (see Section 3.1.3).

D.4 imcopy

The imcopy task is found in the IMAGES package. It can be used to copy a section of one

image into another image:

cl> imcopy obj0005[194:207,452:489] obj0006[194:207,452:489]

Imcopy may also be used for converting bad pixel images into pixel list �les:

cl> imcopy obj3mask obj3mask.pl

cl> hedit obj0003 BPM \obj3mask.pl" add+ verify+

The name of the pixel list �le is added to the header using the hedit task. The bad pixel list is

used when running tasks such as combine and imcombine (see Section 3.2.3).

D.5 imexpr

The task imexpr is found in the IMAGES package available only in the 2.10.3 or later releases

of IRAF. This task allows for more complex image arithmetic calculations than those possible

with imarith. Masks may be created with this task and applied to the images. The many

arguments of the operation are speci�ed in the operands a thru z. The expression is declared

in terms of these operands. The operands may take three forms, an image name, an image

header, and numeric constants. These are used in the expression along with any of the possible

operators and functions.

The functions are too numerous to list here, however descriptions are found in the help page

for this task. It is possible to replicate sections of an image, swap the right and left sides of

an image, add several images and/or a constant, create new images, and make pixel list masks.

The two parameters intype and outtype control the datatype for the input and output images.

If the expression is to be evaluated in oating point precision, then the intype should be set to

real.

For bad regions in an image below the values 200 adu and cosmic rays above the value of

20000 adu, a mask image is created using the following:

cl> imexpr \a > 200 && a < 20000" mask a=obj0005

The bad regions will be set to 0 while the good regions are set to 1 in the output image. The

mask may instead be created as a pixel list �le by adding the \.pl" extension.

27



E Adding Noise to an Image: mknoise

The mknoise task is found in the NOAO.ARTDATA package. It will make or add noise and

cosmic rays to a 1 or 2D image. The gain and readnoise may be speci�ed for computing Poisson

noise. The noise is added on top of the background de�ned. Positions of cosmic rays may be

speci�ed in a �le or a number (ncosrays) are scattered randomly throughout the image. The list

must include the positions and intensities of the cosmic rays to be produced.

cl> type crlist

20.5 40.6 1000

103.8 179.4 3000

230.0 15.8 300

647.2 480.2 400

690.4 275.9 1000

cl> mknoise obj0004 out=obj4cr cos=crlist

This example adds the cosmic rays listed in the �le to the image and creates a new image.

cl> mknoise obj0006 back=350 rdnoise=8.5 gain=3.4 poisson+ ncos=30

This example adds Poisson noise to the speci�ed background level and 30 cosmic rays to the

image and then overwrites the image. Tasks such as cosmicrays may be used on the output

image to test the limits of the search algorithms.

F Other Useful Documentation

Help pages are available for all the tasks mentioned in this document. More information on topics

covered in this manual may be found in the following documentation, accessed by anonymous

ftp to iraf.noao.edu, or 140.252.1.1:

� Cleaning Images of Bad Pixels and Cosmic Rays Using IRAF, by Lisa Wells and

David Bell, September 1994 (this manual). (iraf/docs/clean.ps.Z)

� A Beginner's Guide to Using IRAF, by Jeannette Barnes, August 1993.

(pub/beguide.ps.Z)

� A User's Guide to CCD Reductions with IRAF, by Philip Massey, June 1992.

(iraf/docs/ccduser2.ps.Z)

� Rectifying and Registering Images Using IRAF, by Lisa Wells, January 1994.

(iraf/docs/reg.ps.Z)

� Mosaicing Images Using IRAF, (in progress).

(iraf/docs/mosaic.ps.Z)

� A User's Guide to Reducing Slit Spectra with IRAF, by Phil Massey, Frank Valdes,

and Jeannette Barnes, April 1992. (iraf/docs/spect.ps.Z)

28


