SPRING 2014: STAT - 1 , Section 10.

HANDOUT 1A - Some computational examples

- 3.73 (p.111) Range $=\operatorname{Max}-\operatorname{Min}=204-2=202$ tornadoes.

$$
\begin{aligned}
& n=12, \quad \sum x_{i}=941, \sum x_{i}^{2}=105,689 \\
& \qquad \begin{array}{c}
s^{2}=\left(\frac{1}{12-1}\right)\left(105,689-\left(\frac{\left[(941)^{2}\right]}{12}\right)\right) \\
=\left(\frac{1}{11}\right) \\
(105,689-73790.0833) \\
=2899.9015
\end{array}
\end{aligned}
$$

So $s=\sqrt{2899.9015}=53.85$ tornadoes.

- 3.79 (p.111) $n=17, \sum x_{i}=4,977, \sum x_{i}^{2}=6,957,341$
(a) $s=586.3153$ burial mounds.
(b) No; for this data set it is not a resistant measure.
(See p. 93 to learn what a resistant measure is).
- 3.81. (a) Non built-up roads will have greater variation.
(b) Range for built-up roads is $103-76=27$ accidents and for non built-up roads is $102-53=49$ accidents.
For built-up roads $n=7, \sum x_{i}=619, \sum x_{i}^{2}=55,719$ and $s=12.79$ accidents and for non built-up roads
$n=7, \quad \sum x_{i}=492, \sum x_{i}^{2}=36,930$ and $s=19.79$ accidents. This confirms our intuition in part (a).

