

Chapters 1, 9 & 6: Microbiology History; Microbial Taxonomy; Growth & Culturing of Bacteria

Dr. Amy Rogers

Fall 2006 Lectures: MW Noon Office Hours: Wednesdays 9:00 AM First "news" articles are on my website.

Please read and submit very brief answers.

Articles will be posted weekly.

Plan to turn in your answers the following Wednesday (but I will accept answers up to two weeks from date article is posted).

Visit my website frequently!

Chemistry review quiz Wednesday. 20 points

Prepare on your own! Use textbook chapter 2, my study guide, my Powerpoint slides (at website)

Biological chemistry

- Remember to review chapter 2 of Black for Wednesday's Chemistry Quiz
- If you have not taken an organic chemistry course (CHEM 6B, 20, 24) you do NOT have the necessary prerequisites for this class!

Evidence against:

• Boil broth, and seal the flask: broth does not produce life (broth does not become cloudy)

Rebuttal:

- Methods used to sterilize the broth "altered" the <u>air</u> (e.g., by heating), and then fresh, unaltered air was kept out
- "Altered" air couldn't interact with the "vital force" in the food

Enter the giant: Louis Pasteur (1822-1895)

19th century French scientist. Accomplishments include:

- Famous experiment refuting <u>spontaneous generation</u> of microbes
- <u>Isolated specific organisms</u> involved in wine fermentation, and disease
- Developed first rabies vaccine
- **Pasteurization** technique to kill unwanted microbes

Other names to know & respect...

- Edward Jenner (18th C.)
 - <u>1st vaccine:</u> smallpox
 - Observation: Milkmaids who got cowpox didn't get smallpox
 - Inject fluid from a cowpox blister: protected
 - Cow = vacca (Latin) → vaccine
- Joseph Lister (late 19th C.)
 - Surgeon
 - Introduced Aseptic technique

Alexander Fleming

- Discovered <u>penicillin</u> (1928)
- Observed a zone of inhibition around a contaminating fungus, where bacteria did not grow
 The mold, of the genus *Penicillium*, secretes an antibacterial agent
- Florey & Chain
 - figured out how to produce it (1940's)
 - "The Third Man" starring Orson Welles

To learn more about remarkable human achievements in the emergence of microbiology, read *Microbe Hunters* by Paul de Kruif

Classification of Microbes (<u>Taxonomy</u>)

Taxonomy began with Linnaeus in 1700's

The Linnean system:

Categorizes living things into smaller and smaller groups which share characteristics

Kingdom, phylum, class, order, family, genus, species
 Linnaeus divided all life into 2 kingdoms: Plant & Animal
 This has since proved to be inadequate

Gives each organism a <u>binomial</u> (two word) species name
 •e.g. *Homo sapiens* (genus + species)

Our classification of living things changes over time as our understanding of "relatedness" improves

•Others produce toxins that can poison water

•Some can fix nitrogen

Chloroplasts are likely remnants of <u>endosymbiotic</u> cyanobacteria (who took up residence inside a eukaryotic cell)

	TABLE 9.5	
	Criteria for Classifying Bacteria	
	Criteria	Examples
-	Morphology	Size and shape of cells; arrangements in pairs, clusters, or filaments; presence of flagella, pili, endospores, capsules
_	Staining	Gram-positive, Gram-negative, acid-fast
Criteria we will use to identify	Growth	Characteristics in liquid and solid cultures, colony morphology, development of pigment
bacteria in lab this semester	Nutrition	Autotrophic, heterotrophic, fermentative with different products; energy sources, carbon sources, nitrogen sources, needs for special nutrients
	Physiology	Temperature (optimum and range); pH (optimum and range), oxygen requirements, salt requirements, osmotic tolerance, antibiotic sensitivities and resistances
	Biochemistry	Nature of cellular components such as cell wall, RNA molecules, ribosomes, storage inclusions, pigments, antigens; biochemical tests
	Genetics	Percentage of DNA bases (G + C ratio); DNA hybridization
	Serology	Slide agglutination, fluorescent-labeled antibodies
	Phage typing	Susceptibility to a group of bacteriophages
	Sequence of bases in rRNA	rRNA sequencing
	Protein profiles	Separate proteins by two-dimensional PAGE (electrophoresis

Log phase

- Exponential (logarithmic) population growth
- 2ⁿ cells present after *n* doublings 2 4 8 16 32 64...
- <u>Generation time</u>: time required for each doubling
 - Under ideal conditions, this time is genetically determined (varies with species)
 - Generally between 20 minutes & 20 hours
 Typically less than 1 hour

Stationary phase

- Cell division slows as the environment changes (fewer nutrients, pH and oxygen level change)
- Some cells dying, some cells dividing - <u>Number of **living** cells stays about the same</u>

- Think New Orleans Superdome
- Food runs out
- Wastes accumulate
- The medium can no longer support healthy cell division
- Cells die
- Population of live cells in the culture decreases
 Can maintain stationary phase in a device called a chemostat
 - •Human cities are a kind of chemostat: fresh medium is continuously added as old medium is withdrawn, maintaining the log phase

Relevant reading in Black's Microbiology:

- Chapter 1 History
- Chapter 9 Taxonomy • p. 232-244; p. 252
- Chapter 6 Growth & Culturing of Bacteria