

Biological chemistry

- Remember to review chapter 2 of Black for Wednesday's Chemistry Quiz
- If you have not taken an organic chemistry course (CHEM 6B, 20, 24) you do NOT have the necessary prerequisites for this class!

First "news" articles are on my website
Please read and submit very brief answers.
Articles will be posted weekly
Plan to turn in your answers the following Wednesday (but I will accept answers up to two weeks from date article is posted).

Visit my website frequently!
Chemistry review quiz Wednesday. 20 points

Prepare on your own!
Use textbook chapter 2, my study guide, my Powerpoint slides (at website)

Spontaneous Generation:

Life from nonliving matter

Every year, the Nile River floods, leaving behind nutrient-rich mud. However, along with the muddy soil, large numbers of frogs appear.

Conclusion:

Muddy soil gave rise to the frogs.

Observation:
Before there were refrigerators, a trip to the butcher shop meant battling the flies around the carcasses.

Conclusion:
Rotting meat was the source of the flies.

Spontaneous Generation:

What about microorganisms?
Microbes seemed to arise spontaneously from broth, etc.
-Think about old food in your refrigerator! Does it spontaneously generate life?

This was a widely held belief in 1800's.

Hampered the development of microbiology as a science, and slowed our understanding of infectious disease

- If microbes come from nonliving things, then infections don't necessarily "spread" from one source to another; they can arise spontaneously.

Spontaneous Generation of Microbes?

Evidence against:

- Boil broth, and seal the flask: broth does not produce life (broth does not become cloudy)

Rebuttal:

- Methods used to sterilize the broth "altered" the air (e.g., by heating), and then fresh, unaltered air was kept out
- "Altered" air couldn't interact with the "vital force" in the food

Enter the giant:
 Louis Pasteur (1822-1895)

$19^{\text {th }}$ century French scientist. Accomplishments include:

- Famous experiment refuting spontaneous generation of microbes
- Isolated specific organisms involved in wine fermentation, and disease
- Developed first rabies vaccine
- Pasteurization technique to kill unwanted microbes

Robert Koch

(1843-1910)

- German contemporary of Pasteur
- Many contributions:
- Isolated anthrax, tuberculosis, other organisms

Pure cultures: Technique for obtaining bacterial cultures containing only one kind of organism

- Koch's postulates

The Germ Theory of Disease:

microorganisms can invade other organisms and cause disease

Idea formulated in mid-19 ${ }^{\text {th }}$ century but not widely accepted

Koch's Postulates

-provided a way to establish this theory
-indirectly refute spontaneous generation

Koch's Postulates

1. The microbe must be present in every case of the disease but absent from healthy organisms
2. The suspected microbe must be isolated and grown in a pure culture
3. The same disease must result when the isolated microbe is inoculated into a healthy host
4. The same microbe must be isolated again from the diseased host

Other names to know \& respect...

- Edward Jenner ($18^{\text {th }} \mathrm{C}$.)
- $1^{\text {st }}$ vaccine: $\frac{\text { smallpox }}{}$
- Observation: Milkmaids who got cowpox didn't get smallpox
- Inject fluid from a cowpox blister: protected
- Cow $=$ vacca $($ Latin $) \rightarrow$ vaccine
- Joseph Lister (late 19 ${ }^{\text {th }}$ C.)
- Surgeon
- Introduced Aseptic technique

- Alexander Fleming

- Discovered penicillin (1928)
- Observed a zone of inhibition around a contaminating fungus, where bacteria did not grow
- The mold, of the genus Penicillium, secretes an antibacterial agent
- Florey \& Chain
- figured out how to produce it (1940's)
- "The Third Man" starring Orson Welles

To learn more about remarkable human achievements
in the emergence of microbiology, read
Microbe Hunters by Paul de Kruif

Sir Alexander Fleming (1881-1955)

The next few weeks: Classification and properties of Eubacteria (true bacteria)

Pure culture: a culture of bacteria containing only one species

-The entire culture will display characteristics distinctive for that species only, making
-Mixed cultures contain more than one species
Strain: subspecies e.g. E. coli 0157
Bacteria of the same species which, when grown in pure culture, have unique characteristic(s)
(that are not significant enough to make them a different species)
What features make one species of bacteria different from anot (what kinds of criteria are used to classify bacteria?)

Bacterial growth requirements example:
Osmolarity

Bacterial growth requirements example:

Oxygen

General categories:

- Aerobes: require oxygen to grow
- Anaerobes: do not require oxygen

To grow bacteria in culture, must provide the appropriate oxygen level in the environment
O_{2} requirement is related to type of metabolism the bacteria perform.

Obligate aerobe: must have free oxygen $\left(\mathrm{O}_{2}\right)$ to grow

Obligate anaerobe: killed by free oxygen
Aerotolerant or indifferent: do not use oxygen but are not harmed by it, so they grow equally well in the presence or absence of air

Facultative anaerobe: organisms that can respire aerobically but will shift to anaerobic metabolism if oxygen is absent. Grow better in air because aerobic respiration is much more efficient.

Lag phase

- Bacteria "wake up" to their happy surroundings:
- Increase in metabolic activity
- Enzyme synthesis
- ATP production
- Increase in cell size
- Preparing for cell division but no increase in number of bacteria yet

Log phase

- Exponential (logarithmic) population growth
- 2^{n} cells present after n doublings

$248163264 \ldots$

- Generation time: time required for each doubling
- Under ideal conditions, this time is genetically determined (varies with species)
- Generally between 20 minutes \& 20 hours
- Typically less than 1 hour

Decline phase

- Think New Orleans Superdome

- Food runs out
- Wastes accumulate
- The medium can no longer support healthy cell division
- Cells die

Population of live cells in the culture decreases

- Can maintain stationary phase in a device called a chemostat -Human cities are a kind of chemostat: fresh medium is continuously added as old medium is withdrawn, maintaining the log phase

Decline phase
- Think New Orleans Superdome
- Food runs out
- Wastes accumulate
- The medium can no longer support healthy cell
division
- Cells die
- Population of live cells in the culture decreases
- Can maintain stationary phase in a device called a chemostat
-Human
as old medies are a kind of chemostat:

Stationary phase

- Cell division slows as the environment changes (fewer nutrients, pH and oxygen level change)
- Some cells dying, some cells dividing - Number of living cells stays about the same

Bacterial growth in a lab: Colonies

Colony:

-pile of bacteria growing on solid media
-all cells are descendents of one original cell

- Clones
- Use to get a pure culture $\boldsymbol{\star}$

In a colony, you see all phases of the growth curve simultaneously, with early phases at the edges (where rapid growth is occuring), and death at the center.

Relevant reading in Black's Microbiology:

- Chapter 1 History
- Chapter 9 Taxonomy
- p. 232-244; p. 252
- Chapter 6 Growth \& Culturing of Bacteria

