

Microorganisms are everywhere

Occasionally, this is a problem:

- Food spoilage
- Infectious disease transmission
- Research / diagnostics

Solution:
Sterilization
or
Disinfection

Sterilization: Autoclaving

Moist Heat (autoclaving)

- Pressurized steam, above the boiling point of water

Example: $121^{\circ} \mathrm{C}, 15 \mathrm{lb} / \mathrm{in}^{2}$ for 15 minutes

- Air must be removed so the chamber fills with steam
- Steam must penetrate the objects to be sterilized
- Items should not be sealed, wrapped, or too crowded; otherwise autoclave time must be increased
- If lower temperature, must increase time to achieve sterility

Sterilization: Radiation

- Ionizing radiation is used to sterilize medical equipment
- Ionizing radiation can also be used to preserve foods, though this process has met with resistance in the U.S.; some people think "irradiated" means "radioactive"
» See news article for more details

Sterilization: Filtration

- Filters are made with different pore sizes, depending on whether you need to filter out viruses
- Viruses are MUCH smaller than bacteria

Staphylococcus epidermidis cells trapped on a $0.22 \mu \mathrm{~m}$ filter

A $0.025 \mu \mathrm{~m}$ filter would also trap viruses

Sterilization: Ethylene oxide

- Flammable gas
- Mechanism: Alkylating agent
- Disrupts function of proteins, nucleic acids - This kills microbes, including viruses
- Carcinogenic (causes cancer)
- Works at room temperature
- Used to sterilize heat- or moisturesensitive materials
- Plastics, rubber, etc.
- Very important for medical equipment

Sterilization: Filtration

- The passage of a material through a filter, or straining device
- Requires filters with very small pores
- Often used to sterilize solutions of heat-sensitive compounds (e.g., drugs)

* Disinfection: HEPA Filtration

- High-efficiency particulate air filters (HEPA)
- are used in ventilation systems where microbial control is important
- High-rise buildings, airplanes, operating rooms, burn units, laboratory hoods, hospital rooms of patients with highly contagious disease (esp. tuberculosis / TB)

Disinfection: Pasteurization

- Invented by Louis Pasteur to prevent souring of wine
- Does NOT sterilize
- DOES kill important pathogens likely to be found in milk
- Salmonella, Mycobacterium, Listeria
- Temperature is kept low enough so milk still tastes OK
- $71.6^{\circ} \mathrm{C}$ for 15 seconds; or,
- $62.9^{\circ} \mathrm{C}$ for 30 minutes

Disinfection: Various chemical agents

- A wide variety of chemicals can kill, or inhibit the growth of, microorganisms
- Some are safe to use on skin; these are usually called antiseptics

Chemical Disinfection: Mechanisms

1. Protein modifications

- Denaturation: hydrogen \& disulfide bonds broken
» May be reversible
- Hydrolysis: cleavage of proteins into amino acids
- Addition of chemical groups (halogens, alkyl groups, etc.)

Protein denaturation

Soap: how does it work?

- Solubilizes lipids, helps to wash away microbes in the rinse water
- Vigorous scrubbing helps a lot
- Alkalinity + sodium: kills some microbes

Measuring bacterial growth:

 Standard Plate CountsYou have a broth culture and you want to know how many bacteria are in it.

Can take 1 mL of broth culture, add it to 9 mL cool but still melted agar, mix and pour into a Petri plate

Relevant reading in
 Black's Microbiology:
 (pages from $6^{\text {th }}$ edition)

- Ch. 12: bits from throughout the chapter were discussed
- Ch. 6: p. 145-147; p. 150
- Over the next few weeks for lab, review ch. 6 p.160-167 (on culturing bacteria)

