

DNA's jobs (information transfer)

- Direct its own replication so each daughter cell gets an exact copy of the parent's genome
- 2. Direct all cellular activity by expressing genes as RNA
 - Transcription into messenger RNA (mRNA)
 - Translation of mRNA into protein

DNA Replication

Replication is Semiconservative:

- One strand from the original molecule is always "conserved" in each new DNA copy
- 1. DNA double helix denatures (strands separate)
- 2. Each strand serves as the *template* for synthesis of a new second strand
- 3. <u>DNA polymerase</u> adds complementary nucleotides
 - 1,000 per second!!!
 - Corrects its own mistakes (proofreading)

- DNA replication in prokaryotes begins at a specific location: <u>origin of replication</u>
 Plasmids must have an "origin" to survive
- Replication proceeds simultaneously in both directions away from the origin
 - The moving point where replication is actually occuring is called the <u>replication fork</u>

To copy the 5' → 3' strand: Polymerase must make a 3' → 5' strand (IMPOSSIBLE)

Solution:

• Lagging strand DNA synthesis:

- DNA polymerase must jump forward and backward as the helix unwinds
- Short, discontinuous fragments of DNA are made 5' to 3' even though the DNA is unwinding in the other direction

• These are called Okazaki fragments

Lagging strand synthesis is enzymatically complex (many steps involved)

DNA RNA

• Unwound regions of DNA can also be "copied" as RNA

<u>RNA polymerase</u>

- ★ Properties of RNA:
 - Single stranded (but often folded up)
 - <u>Uracil</u> instead of thymine (U still pairs with A)
 - <u>Ribose instead of deoxyribose in backbone</u>

message of mRNAs into a different chemical

polymer: proteins!

tRNA recognizes the Genetic Code

mRNA sequences code for amino acids:

Three nucleotides = One amino acid

<u>Codon</u> = 3 nucleotides

tRNA

- Amino acid bound specifically matches the sequence of the *anticodon*
- Accurate base pairing of the anticodon with the codon of mRNA brings correct amino acid to the growing polypeptide (protein) chain

Properties of the Different Kinds of RNA		
Kind of RNA	Properties	
Ribosomal	Combines with specific proteins to form ribosomes.	
	Serves as a site for protein synthesis.	
	Associated enzymes function in controlling protein synthesis.	
Messenger	Carries information from DNA for synthesis of a protein.	
	Molecules correspond in length to one or more genes in DNA.	
	Has base triplets called codons that constitute the genetic code.	
	Attaches to one or more ribosomes,	
Transfer	Found in the cytoplasm, where they pick up amino acids and transfer them to mRNA.	
	Molecules have a cloverleaf shape with an attachment site for a specific amino acid.	
	Each has a single triplet of bases called an anticodon, which pairs complementarily the corresponding codon in mRNA	

Types of Mutations	Effects on Organisms
Point Mutation	
Single base change in DNA with no change in the amino acid specified by the mRNA codon.	No effect on protein; a "silent" mutation.
Change in DNA with change in the amino acid sequence specified by the mRNA codon.	Change in protein by substitution of one amino acid for another; can significantly alter function of protein.
Change in DNA that creates a terminator codon in mRNA.	Produces polypeptide of no use to organism and prevents synthesis of normal protein.
Frameshift Mutation	
Deletion or insertion of one or more bases in DNA.	Changes entire sequence of codons and greatly alters amino acid sequence; can introduce terminator codon and produce useless polypeptides instead of normal proteins.

Enzymes that act on DNA

<u>Nuclease</u>:

- Cuts DNA backbone (breaks covalent bonds)
 Many kinds, depends on where they work in a DNA strand, whether they cut one strand or both...
- Polymerase:
 - Synthesizes new DNA polymer (adds nucleotides)
- Ligase:

 Pastes together broken DNA backbones (forms covalent bonds; opposite of nuclease activity)

Studying mutations: The Ames Test

- In eukaryotes, mutations can disrupt control of cell division, ultimately causing cancer
- Generally, mutagen = carcinogen

(a chemical that causes mutations may also cause cancer)

• Important question: how to determine if a chemical is a potential carcinogen?

Ames test

- One could expose lab animals to a chemical and wait years, looking for cancer to develop (expensive, slow)
- Or, screen for mutagenesis in bacteria! (fast, cheap)

Ames test

- Positive test: further study needed
- Negative test: chemical is probably safe

