

Aerobic Respiration

Dr. Amy Rogers Bio 139 Fall 2006 Office Hours: Mondays & Wednesdays, 8:30-10:00 AM

Some figures taken from Krogh <u>Biology: A Guide to the Natural</u> <u>World</u> Bacterial Metabolism: 3 pathways to extract energy from glucose

• Glycolysis, followed by either

• Fermentation --oxidize NADH, usually without producing ATP --does NOT use oxygen

Aerobic Respiration
 (Krebs cycle, electron transport, oxidative phosphorylation)

To respire aerobically, a bacterium needs:

- Oxygen
- A cytochrome system
 Indirectly tested for with *catalase test*
- (For facultative anaerobes that *can* ferment), a low concentration (<0.1%) of a fermentable sugar • If the concentration is higher, the organism will ferment it even in the presence of O₂ (TSI test!!!) because it takes fewer enzymes/fewer reactions
 - If the bacteria CANNOT ferment the sugar, they will use it aerobically at ANY concentration, high or low

And of course, all relevant enzymes for the various biochemical pathways.

Energy extracte	d <i>after</i> glycolysis
Substrate-level	D I
phosphorylation:	Per glucose molecule:
Krebs 1 GTP	= 2 GTP
Reducing Power:	
Acetyl-CoA Production 1 NADH	= 8 NADH
Krebs 3 NADH 1 FADH ₂	= 2 FADH ₂

Toxins that affect aerobic respiration

★Cyanide & Azide

- Affect function of cytochromes
- Block electron transport
- Inhibits growth of catalase + bacteria
- Catalase bacteria unaffected

Uncoupling agents

- "uncouple" dissipation of the proton gradient from ATP synthesis
- The energy stored in the gradient is wasted
- Example: dinitrophenol

Energy Captured in ATP Molecules from a Glucose Molecule by Anaerobic and Aerobic Metabolism in Prokaryotes			
Prokaryotic Metabolic Process	Number of ATP Molecules		
	Anaerobic Conditions	Aerobic Conditions	
Glycolysis			
Substrate level	4	4	
Hydrogen to NAD	0	6	
Pvruvate to Acetyl-CoA			
Hydrogen to NAD	0	6	
Krebs Cycle			
Substrate level	0	2	
Hydrogen to NAD	0	18	
Hydrogen to FAD	0	4	
Less Energy for Phosphorylation	-2	-2	
Total	2	38	

