\qquad

Exam \#1, 100 pts

1. (4 pts) Provide the complete IUPAC name for each of the following compounds.

2. (6 pts) (a) Identify (by circling) all electrophilic positions in compound A and all nucleophilic positions in compound B given below:

Compound A

Compound B
(b) Using an arrow, point to the most reactive electrophile in compound A and the most reactive nucleophile in compound B .
(c) Provide a brief (1-2 sentence) explanation for one of your answers in part b.
3. (18 pts) Evaluate each of the following sets of compounds according to the given criterion. Circle your choice and give a brief (<10 word) explanation for your reasoning.
(a) Which compound is the more stable cation?

(b) Which compound is the strongest acid?

(c) Which compound is the most stable?

(d) Which compound is the most stable?

(e) Which alkene is the most reactive nucleophile?

(f) Which compound has the strongest carbon-hydrogen bonds?

$H=H$
4. (26 pts) Provide the major organic product(s) or supply missing reagents for each of the following reactions.

5. (10 pts) (a) Provide a detailed stepwise mechanism using curved arrows for the following reaction. Be sure to show each individual step and include the structure of each intermediate formed.

(b) Draw an energy diagram for your mechanism above and label the position of starting material, intermediates, and the product.

6. (10 pts) (a) Provide a detailed stepwise mechanism using curved arrows for the following reaction. Be sure to show each individual step and include the structure of each intermediate formed.

(b) Is this reaction expected to be thermodynamically favorable? Briefly explain why or why not (1-2 sentences).
7. (10 pts) Shown below are five isomers, $\mathbf{A}-\mathbf{E}$, all with the molecular formula $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{2}$.

A

B

C

D

E
(a) What is the degree of unsaturation for these compounds? (show your work)
(b) Which compounds would react with exactly 2 molar equivalents of Br_{2} ?

Provide all letter answers that apply: \qquad
(c) Which compounds would only display three signals in ${ }^{13} \mathrm{C}$ NMR spectroscopy?

Provide all letter answers that apply: \qquad
(d) Which compounds will produce CO_{2} as a product upon reaction with O_{3} then $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}$?

Provide all letter answers that apply: \qquad
(e) Which compound matches the IR spectrum given below? \qquad

8. (10 pts) Consider the two step reaction sequence shown below reacting compound A with $\mathrm{CH}_{3} \mathrm{O}^{-}$to give an intermediate, followed by reaction with $\mathrm{H}_{3} \mathrm{O}^{+}$giving product B .

(a) When conducted in the lab, product B provides the spectroscopic data given below. Using this data, what is the structure of the isolated product B ? Draw the structure of the intermediate, product B , and provide the curved arrows for both steps in the above reaction scheme.
${ }^{13}$ CNMR: 6 peaks
IR major peaks:

$$
3300 \mathrm{~cm}^{-1} \text {, strong and broad }
$$

$2900,2800 \mathrm{~cm}^{-1}$, strong to medium
$1720 \mathrm{~cm}^{-1}$, strong
(b) Do you think this reaction is thermodynamically favorable? Circle YES or NO
(c) Briefly (10-20 words) explain your answer in part b.
9. (6 pts) Propose a sequence of steps to synthesize the following product from the given starting material.

$$
\longrightarrow>
$$

Destabilizing Strain Energies

1,3-Diaxial Interactions	Gauche Interactions	Eclipsing Interactions
$\mathrm{CH}_{3}-\mathrm{H}=3.8 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{CH}_{3}-\mathrm{CH}_{3}=3.8 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{H}-\mathrm{H}=4.0 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{H}=4.6 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{CH}_{3}=4.6 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{CH}_{3}-\mathrm{H}=6.0 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{CH}_{3}=8.4 \mathrm{~kJ} / \mathrm{mol}$		$\mathrm{CH}_{3}-\mathrm{CH}_{3}=11.0 \mathrm{~kJ} / \mathrm{mol}$

Table 12.1 Characteristic IR Absorptions of Some Functional Groups

Functional Group	Absorption (cm^{-1})	Intensity	Functional Group	Absorption (cm^{-1})	Intensity
Alkane			Amine		
$\mathrm{C}-\mathrm{H}$	2850-2960	Medium	$\mathrm{N}-\mathrm{H}$	3300-3500	Medium
Alkene			$\mathrm{C}-\mathrm{N}$	1030-1230	Medium
$=\mathrm{C}-\mathrm{H}$	3020-3100	Medium	Carbonyl compound		
$\mathrm{C}=\mathrm{C}$	1640-1680	Medium	$\mathrm{C}=0$	1670-1780	Strong
Alkyne			Carboxylic acid		
$=\mathrm{C}-\mathrm{H}$	33300	Strong	$\mathrm{O}-\mathrm{H}$	2500-3100	Strong, broad
$\mathrm{C} \equiv \mathrm{C}$	2100-2260	Medium	Nitrile		
Alkyl halide			$C=N$	2210-2260	Medium
$\mathrm{C}-\mathrm{Cl}$	600-800	Strong	Nitro		
$\mathrm{C}-\mathrm{Br}$	500-600	Strong	NO_{2}	1540	Strong
Alcohol					
$\mathrm{O}-\mathrm{H}$	3400-3650	Strong, broad			
$\mathrm{C}-\mathrm{O}$ Arene	1050-1150	Strong	Aldehyde C-H	$2800=2700$	Medium
$\mathrm{C}-\mathrm{H}$	3030	Weak			
Aromatic ring	1660-2000	Weak			
	1450-1600	Medium			

[^0]
[^0]: © 2007 Thomson Higher Education

