Chapter 9: Stereochemistry

Two forms of Thalidomide -One is a sedative used in 1960's -One caused birth defects

Chapter 9: Stereochemistry

Stereoisomers of Limonene: Lemons vs Oranges

Stereochemistry Vocabulary

Enantiomers = nonsuperimposable mirror images (stereoisomers)

Chiral molecules = molecules that are not superimposable with mirror image (handedness)

Achiral molecules – molecules that are superimposable with mirror image (have some symmetry element)

Chiral Centers = tetrahedral C sp³ bonded to four different groups (stereocenter)

Configurational Isomers =

stereoisomers that differ in their configuration of a chiral center

How do we differentiate these two enantiomers?

- By name?
- Chemically? Enantiomers have same physical properties (mp, bp, etc)

Configurations of Chiral Centers

IUPAC sequence rules for R and S Configuration

- 1. Assign priority letters to the four groups (A-D) using same rules we used for E & Z alkenes (based on atomic number of atoms connected to chiral center, if same find first point of difference; multiple bonds count multiple times).
- 2. View molecule so group D points away from you.
- 3. Trace from group A to B to C:

Clockwise = R Counterclockwise = S

(2R) – 2-chloropentane

(2S) - 2-chloropentane

- easy when group D already points away from you
- note the wedge and dash are always next to each other

Configurations of Chiral Centers

What do you do when group D does not point away from you?

1. View from a different perspective:

2. Shortcut – if you switch two groups (on paper) you invert stereocenter (go from R to S and vice versa)

So original must be R!

(Note that a second switch would give you the R enantiomer again)

Optical Activity: Rotation of Plane **Polarized Light**

How do you physically tell the two enantiomers apart?

- Clockwise = dextrorotatory (+)
- Counterclockwise = levorotatory (-)
- Enantiomers rotate equally in opposite direction

Specific Rotation $[\alpha]_D = \frac{\alpha}{c \ge 1}$ c = concentration (g/mL)l = path length (dm)

 α = observed rotation (°) l = path length (dm)

 $[\alpha]_{\rm D} = -23.1^{\circ}$

Note: No correlation between R & S with (+) and (-)

Optical Activity and Enantiomeric Excess (% ee)

Can we determine the amounts of each enantiomer present?

- 1:1 (equal) mixtures of enantiomers
 - optically inactive (does not rotate plane polarized light)
 - referred to as a racemic mixture (racemate) (100% pure referred to as optically pure)
- Unequal mixtures: enantiomeric excess (% ee)

% ee =
$$\frac{[\alpha] \text{ observed}}{[\alpha] \text{ pure enantiomer}}$$
 x 100%

$$= \frac{\% R - \% S}{\% R + \% S} \times 100\%$$

Ex: Mixture of R & S 2-bromobutane $[\alpha] = -11.55^{\circ}$

% ee =
$$\left| \frac{-11.55}{23.10} \right| \times 100\% = 50\%$$

50% excess (-) R enantiomer	Total 75% R
50% racemic	25% S

Compounds with Multiple Chiral Centers

Now how many stereoisomers are possible?

• For n chiral centers, 2ⁿ possible stereoisomers

2-bromo-3-chlorobutane

 $2^2 = 4$ stereoisomers

(2R, 3R) (2S, 3S) (2R, 3S) (2S, 3R)

• For enantiomers, configuration at every chiral center inverted

• How are these last two related to the first two?

Diastereomers

Definition = stereoisomers NOT related as an object and its non-superimposable mirror image (not enantiomers)

1. cis / trans diastereomers

2. configurational (R and S) diastereomers

- Do not have opposite configuration at every chiral center
- Unlike enantiomers, diastereomers have completely different physical properties (i.e. mp, bp, [α], etc)

Resolution

If enantiomers have the same properties, can you separate them?

- 1. Convert enantiomers into diastereomers
- 2. Separate diastereomers
- 3. Convert diastereomers back into pure enantiomers

Meso Compounds

Molecules with chiral centers, but are achiral due to symmetry

2 identical chiral centers with opposite configuration

Fischer Projections

Alternative way to draw chiral centers

Fischer Projections: Multiple Chiral Centers

Any other stereoisomers possible?

Two chiral centers, $2^2 - 4$ possible (maximum)

I	I	
H ₃ C-	—он	
H ₃ C-	—он	
\mathbf{H}		

MESO! Only other stereoisomer possible (total of three stereoisomers) (R,S and S,R are identical)

Part I: Reactions that make a chiral center

Achiral intermediates give achiral (racemic) products

- Carbocation intermediates
- Nuc can attack from 'top' or 'bottom'

- The two transition states are enantiomeric, thus have equal energy so products form in equal amounts
- Achiral reagents lead to optically inactive products

Part II: Chiral reactants that make new chiral centers

Chiral intermediates give chiral products

- form unequal mixtures of diastereomers
- transition states are now diastereotopic
 (unequal energy so form in unequal amounts)

• Optically active reactants leads to optically active products

Examples

Stereoselectivity - predominant formation of one of several possible stereoisomeric products

Cis and trans 2-butene produce different stereoisomeric products

Chirality at Atoms Other than Carbon

Requires tetrahedral atom with four unique groups

Chirality without chiral centers:

Prochirality

If an achiral molecule can be turned into a chiral molecule in a single chemical step it is "Prochiral"

sp³ Prochiral Centers: Pro-R and Pro-S

