Alkenes - Structure, Stability, Nomenclature

Also called an olefin but *alkene* is better General formula C_nH_{2n} (if one alkene present) unsaturated - contain fewer than maximum H's possible per C Can act as weak nucleophiles

Ethylene: C₂H₄ (fewer hydrogens—unsaturated)

Ethane: C₂H₆ (more hydrogens—*saturated*)

Structure of Alkenes

One C-C sigma bond and one C-C pi bond Presence of C-C pi bond prevents bond rotation!

© 2007 Thomson Higher Education

Degree of Unsaturation

Sum of all multiple bonds and/or rings in a molecule Compared to saturated alkane (C_nH_{2n+2}) where each double bond and ring remove two hydrogens.

 $DoU = (H_{sat} - H_{actual})/2$

where H_{sat} is number of hydrogens in saturated compound H_{actual} is number of hydrogens in compound molecular formula

and $H_{sat} = 2_n + 2 - \#X + \#N$

X = halogens N = nitrogens (ignore other atoms)

Example: C₆H₁₀

 $H_{Sat} = 2(6) + 2 = 14 (C_6 H_{14})$

 $H_{actual} = 10$

DoU = 2

- Two double bonds?
- or triple bond?
- or two rings
- or ring and double bond

Examples

 $C_7H_{13}N$

 $H_{sat} = 2(7) + 2 + 1 = 17$ $H_{actual} = 13$

DoU = 2

- Two double bonds?
- or triple bond?
- or two rings
- or ring and double bond

C₈H₈NBr₃

- $H_{sat} = 2(8)+2+1-3 = 16$ $H_{actual} = 8$
- DoU = 4
 - Four double bonds?
 - two triple bonds?
 - two rings/two double bonds?

Alkene Nomenclature

- Identify longest chain containing the alkene (both carbons)
- Number carbons in chain so that double bond carbons have lowest possible numbers (if choice, give sub lowest number)
- Name, number, and list substituents alphabetically as prefix like alkane nomenclature
- Indicate position of alkene with number-followed by name of longest chain with suffix -ane replaced with -ene

Alkene Nomenclature: Isomer Prefix

Disubstituted Alkenes: Cis and Trans

cis-2-Butene

trans-2-Butene

- E and Z System
- rank two groups on each individual carbon by atomic number
- if same, find first point of difference
- count multiple bonds multiple times
- Highest Priority Groups same side = Z, opposite = E

Cycloalkene Nomenclature

- Alkene carbons by definition carbons 1 and 2. Give first substituent lowest possible number.
- Name, number, and list substituents alphabetically as prefix like alkane nomenclature
- You do not need to indicate position of alkene with number, simply name ring size with prefix cyclo and followed suffix -ene
- For rings smaller the cyclooctene you do not need to include alkene geometry (only cis is possible)

1,5-Dimethylcyclopentene

© 2007 Thomson Higher Education

Alkenes as Substituents

Stability of Alkenes

- Evaluate heat given off when C=C is converted to C-C
- More stable alkene gives off less heat
 - trans-Butene generates 4 kJ less heat than cis-butene

Stability of Alkenes

Table 6.2	Heat	s of Hyd	rogena	tion o	of Some	Alken	es					
1				Alkene				_	$\Delta H^{\circ}_{hydrog}$			
Substitution			(kJ/mol)		(kcal/m	ol)	
Ethylene			$H_2C = CH_2$				-	-137		-32.8		
Monosubstituted			CH ₃ CH=CH ₂				-	-126 -30.1				
Disubstituted			$CH_3CH = CHCH_3$ (cis)				-	-120 -28.6				
				CH3	CH=CH	HCH ₃ (t	rans)	-	-116		-27.6	
			$(CH_3)_2C = CH_2$				-	-119		-28.4		
Trisubstituted			$(CH_3)_2C = CHCH_3$				-	-113		-26.9		
Tetrasubstituted			$(CH_3)_2C = C(CH_3)_2$				-	-111		-26.6		
asubstitute	d >	Trisubs	titutec	ł	>	Dis	ubstitu	uted	>	Μ	onosub	sti
R R		R	Н		R	Н		R	Н		R	1
) C=C	>	Č=	C (>	Č=	=Ć	*	Č=	=Ć	>) C=	Ċ

© 2007 Thomson Higher Education

Stability of Alkenes

Hyperconjugation - Electrons in neighboring filled σ bond orbital stabilize vacant antibonding π orbital – net positive interaction from delocalization of electrons (not possible when only H present)

Recall: Electrophilic Addition of Alkenes

- General reaction mechanism: electrophilic addition
- Attack of electrophile (such as HBr) on π bond of alkene
- Produces carbocation and bromide ion
- Carbocation is an electrophile, reacting with nucleophilic bromide ion

1 A hydrogen atom on the electrophile HBr is attacked by π electrons from the nucleophilic double bond, forming a new C-H bond. This leaves the other carbon atom with a + charge and a vacant p orbital. Simultaneously, two electrons from the H-Br bond move onto bromine, giving bromide anion.

Promide ion donates an electron pair to the positively charged carbon atom, forming a C-Br bond and yielding the neutral addition product.

2-Methylpropene

Carbocation intermediate

2-Bromo-2-methylpropane

© 2007 Thomson Higher Education

Recall: Electrophilic Addition Energy Path

- Two step process
- First transition state is high energy point

Productlike transition state

Electrophilic Additions

The reaction is successful with HCl and with HI as well as HBrHI is generated from KI and phosphoric acid

Remaining Notes

Rest of the notes are for your benefit and to view pictures. Remaining topics will be discussed on the board.

Orientation of Electrophilic Addition: Markovnikov's Rule

- In an unsymmetrical alkene, HX reagents can add in two different ways, but one way may be preferred over the other
 - If one orientation predominates, the reaction is regiospecific
 - Markovnikov observed in the 19th century that in the addition of HX to alkene, the H attaches to the carbon with the most H's and X attaches to the other end (to the one with the most alkyl substituents)
 - This is Markovnikov's rule

Example of Markovnikov's Rule

- Addition of HCI to 2-methylpropene
- Regiospecific one product forms where two are possible
- If both ends have similar substitution, then not regiospecific

 No alkyl groups on this carbon

Markovnikov's Rule (restated)

- More highly substituted carbocation forms as intermediate rather than less highly substituted one
- Tertiary cations and associated transition states are more stable than primary cations

Carbocation Structure and Stability

- Carbocations are planar and the tricoordinate carbon is surrounded by only 6 electrons in sp^2 orbitals
- The fourth orbital on carbon is a vacant *p*-orbital
- The stability of the carbocation (measured by energy needed to form it from R-X) is increased by the presence of alkyl substituents

© 2007 Thomson Higher Education

Inductive stabilization of cation species

via hyperconjugation!

© 2007 Thomson Higher Education

The Hammond Postulate

- If carbocation intermediate is more stable than another, why is the reaction through the more stable one faster?
 - The relative stability of the intermediate is related to an equilibrium constant (\Delta G^o)
 - The relative stability of the transition state (which describes the size of the rate constant) is the activation energy (\Delta G[‡])
 - The transition state is transient and cannot be examined

Transition State Structures

- A **transition state** is the highest energy species in a reaction step
- By definition, its structure is not stable enough to exist for one vibration
- But the structure controls the rate of reaction
- So we need to be able to guess about its properties in an informed way
- We classify them in general ways and look for trends in reactivity – the conclusions are in the Hammond Postulate

Examination of the Hammond Postulate

 A transition state should be similar to an intermediate that is close in energy

Sequential states on a reaction path that are close in energy are likely to be close in structure - G. S. Hammond

Competing Reactions and the Hammond Postulate

- Normal Expectation: Faster reaction gives more stable intermediate
- Intermediate resembles transition state

Mechanism of Electrophilic Addition: Rearrangements of Carbocations

- Carbocations undergo structural rearrangements following set patterns
- 1,2-H and 1,2-alkyl shifts occur
- Goes to give more stable carbocation
- Can go through less stable ions as intermediates

Hydride shifts in biological molecules

