1. Classify the reaction type for each of the following organic reactions:

2. Break the indicated bonds in both a homolytic and heterolytic fashion. Use curved arrows to illustrate electron movement and draw the expected products. For heterolytic bond breaking, there are two directions the bond can break. Draw both options and circle which is more likely. - (I way for this ore)
homolytic heterolytic $\underset{\substack{\text { pibond }}}{\sim} \xrightarrow{\sim} \rightarrow \stackrel{\text { OH }}{\sim}$

3. Circle all Electrophilic sites in the following compounds.

1

4. Circle all Nucleophilic sites in the following compounds.

5. Rank each series from most reactive (1) to least reactive Electrophiles:
5
(a)

4

1
2
O_{0}

(b)

3

2

5
$4+5$ could go either way (for now)
6. Rank each series from most reactive (1) to least reactive Nucleophiles:
(a)

1

(b)

2

4
7. Identify all electrophilic sites in compound A and all nucleophilic sites in compound B. Predict a product if A and B react with each other!

compound A

compound B
multiple
possible
products.
here is one.....

8. For each of the following reactions there are three/four possible pathways for a reaction between a Nucleophile and an Electrophile. Draw all three pathways including curved arrows and structures of products. Then, rank the liklihood of each of the three pathways.
(a)
 $+\mathbf{H O}^{\ominus}$ $\longrightarrow 4$ pathways
(b)
 $\longrightarrow 3$ pathways
(c)

(A)

bad,
charge.

(B)

2
Full octet, no resonance

folloctet, sesonure skibinzel chusoge

3
worst
incomplete octet
9. For the following reaction between a Lewis acid and base, you can draw the curved arrows in one of two ways, starting from a lone pair or the pi bond. Draw both methods, why does it not matter how you draw it (why are they both correct)?

10. For the following reaction between a Lewis acid and base, two products can be formed. Draw the two products and illustrate with curved arrows how each is formed. Which product do you think is favored? Explain.

1)

2)

stronger bond than
$\mathrm{C}-\mathrm{O}$, making product
1 better ($c=0$ also better than $C=C$)

11. Predict the products from the following curved arrows:

12. Estimate $\Delta \mathrm{G}$ for the following reactions. What type of reaction is occurring in each step?

13. Draw a free energy diagram for converting cyclohexene into cyclohexanol as illustrated by the two reactions in question 12 (you know how the first reaction occurs! assume the second reaction is a one step process). Assume that the second reaction is much faster than the first reaction.
Label all transition states and draw all the intermediates. Also illustrate the activation energy for each step and the overall energy change.

14. Label the following reactions as addition, elimination, substitution, or rearrangement.
a.

b.

c.

d.

e.

15. For the following transformations, fill in mechanistic arrows to show the mechanism.

16. Based on the mechanistic arrows and the starting materials shown, show the expected products for the following transformations.

