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REVIEW 
 
The objective of this section is to ensure that you have the necessary foundation in statistics so 

that you can maximize your learning in data analysis.  Hopefully, much of this material will be 

review.  Instead of repeating Statistics 1, the pre-requisite for this course, we discuss some major 

topics with the intention that you will focus on concepts and not be overly concerned with details.  

In other words, as we “review” try to think of the overall picture! 

Statistic vs. Parameter 

In order for managers to make good decisions, they frequently need a fair amount of data that 

they obtain via a sample(s).  Since the data is hard to interpret, in its original form, it is necessary 

to summarize the data.  This is where statistics come into play -- a statistic is nothing more than a 

quantitative value calculated from a sample. 

Read the last sentence in the preceding paragraph again.  A statistic is nothing more than a 

quantitative value calculated from a sample.  Hence, for a given sample there are many 

different statistics that can be calculated from a sample.  Since we are interested in using 

statistics to make decisions there usually are only a few statistics we are interested in using.  

These useful statistics estimate characteristics of the population, which when quantified are 

called parameters. Greek letters are usually used to denote parameters.  Some of the most 

common parameters are μ  (population mean), 2σ  (population variance), σ  (population 

standard deviation), and π  (population proportion). 

The key point here is that managers must make decisions based upon their perceived values of 

parameters.  Usually the values of the parameters are unknown.  Thus, managers must rely on 

data from the population (sample), which is summarized (statistics), in order to estimate the 

parameters.  The corresponding statistics used to estimate the parameters listed above (μ , 2σ , 
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σ , and π ) are called x  (sample mean), 2s  (sample variance), s  (sample standard deviation), 

and Ρ  (sample proportion).  There are formulas for each of these statistics.  For example, given a 

sample of n observations: 1x , 2x , ..., nx , the sample mean is  
1

n

i
i

x x n
=

=∑  and the sample 

variance is ( )2 2

1
( ) 1

n

i
i

s x x n
=

= − −∑ . The sample standard deviation s  is just the square root of 

2s . 

Mean and Variance 

Two very important parameters which managers focus on frequently are the mean and variance 0

1.  

The mean, which is frequently referred to as “the average,” provides a measure of the central 

location while the variance describes the amount of dispersion within the population.  For 

example, consider a portfolio of stocks.  When discussing the rate of return from such a portfolio, 

and knowing that the rate of return will vary from time period to time period 1

2 one may wish to 

know the average rate of return (mean) and how much variation there is in the returns.  The rate 

of return is calculated as follows: 

 New Price - Old Pricereturn=
Old Price

. 

There are two other numerical measures starting with the letter “m”: median and mode.  

The median is another measure of central location and is the value in the middle when the data 

are arranged in ascending order.  The mode is a third measure of central location and is the value 

that is observed most frequently in the data. 

 

 

                                                 
1   The square root of the variance is called a standard deviation. 
2   What is the random variable? 
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Exercises 

1.  Explain the difference between mean and median.  Why does the media report median more 

often than the mean for family income, housing price, rents, etc.? 

2. Explain why investors might be interested in the mean and variance of stock market return. 

 

Sampling Distribution 

In order to understand statistics and not just “plug” numbers into formulas, one needs to 

understand the concept of a sampling distribution.  In particular, one needs to know that every 

statistic has a sampling distribution, which shows every possible value the statistic can take on 

and the corresponding probability of occurrence. 

What does this mean in simple terms?  Consider a situation where you wish to calculate 

the mean age of all students at CSUS.  If you take a random sample of size 25, you will get one 

value for the sample mean (average) 2

3.  Suppose you get another random sample of size 25, will 

you get the same sample mean? What if you take many samples, each of size 25, and you graph 

the distribution of sample means.  What would such a graph show?  The answer is that it will 

show the distribution of sample means, from which probabilistic statements about the 

population mean can be made. 

Normal Distribution 
 
For the situation described above, it can be shown theoretically that the distribution of the sample 

mean will follow a normal distribution 4 .  What is a normal distribution?  The normal 

                                                 
3  The sum of all 25 values divided by 25. 
 
4 A very important theorem from your Stat 1 course is called the Central Limit Theorem. The Central Limit 
Theorem states that the distribution of sample means is approximately normal provided that the sample size is large 
enough. “Central” here means important. 
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distribution has the following attributes (suppose the random variable Χ  follows a normal 

distribution): 

• It depends on two parameters - the mean ( μ ) and variance ( 2σ ): 

( )
( )2

221
2

X

e
μ

σ

πσ

−
−

Ρ Χ = . 

• It is bell-shaped. 
• It is symmetrical about the mean. Thus, ( ) ( )Prob Ρrob 0.5μ μΧ ≤ = Χ ≥ = . 

 
Exercise: 

Suppose the number of gallons of milk sold per day at three neighborhood grocery stores follow 

the normal distribution with the following means and variances: N(50, 16), N(100, 16), N(50, 

64). The following three normal curves are obtained using StatGraphics (Describe -> 

Distribution Fitting -> Probability Distributions -> Right-mouse click and select Analysis 

Options…). Compare the three curves and state the differences. 

Mean,Std. Dev.
50,4
100,4
50,8

Normal Distribution

0 20 40 60 80 100 120
x

0

0.02

0.04

0.06

0.08

0.1

de
ns

ity
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[You are encouraged to use StatGraphics and plot different combinations of means and 

variances for normal distributions.] 

From a manager’s perspective it is very important to know that with normal distributions 

approximately: 

• 68% of all observations fall within 1 standard deviation of the mean: 
( )Ρrob 0.68μ σ μ σ− ≤ Χ ≤ + ≈ . For example, in the milk sales example, if the sales 

follow a normal distribution with mean 50 and variance 16, the store will sell between 
46 gallons and 54 gallons of milk (50-4, 50+4) with a probability of roughly two-
thirds (68%). 

• 95% of all observations fall within 2 standard deviations of the mean: 
( )Ρrob 2 2 0.95μ σ μ σ− ≤ Χ ≤ + ≈ . For example, in the milk sales example, if the 

sales follow a normal distribution with mean 50 and variance 16, the store will sell 
between 42 gallons and 58 gallons of milk [50 – (2 x 4), 50 + (2 x 4)] with a 
probability of roughly 95% (19 out of 20 times). 

• 99.7% of all observations fall within 3 standard deviations of the mean: 
( )Ρrob 3 3 0.997μ σ μ σ− ≤ Χ ≤ + ≈ . For example, in the milk sales example, if the 

sales follow a normal distribution with mean 50 and variance 16, the store will sell 
between 38 gallons and 62 gallons of milk [50 – (3 x 4), 50 + (3 x 4)] with a 
probability of roughly 99.7%. 
 

 
When μ =0 and 1σ = , we have the so-called standard normal distribution, usually 

denoted by Ζ .  It is also called the Z-score.  To convert any normal random variable Χ  to a 

standard normal random variable (Z-score), do the following: 

 Value - Mean
Standard deviation

μ
σ

Χ −
Ζ = = . (1.1) 

After you find this Z-score, you can find the probabilities such as ( )Ρrob 1.34Ζ ≤  in the standard 

normal distribution table in most statistics books.   

Exercises 

1. What is the probability ( )Ρrob 0Ζ ≤  or ( )Ρrob 0Ζ ≥  or ( )Ρrob 0Ζ <  or ( )Ρrob 0Ζ > ? 
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2. In the milk sales example above, the milk sales per day, represented by the random variable X, 

follow a normal distribution with mean 50μ =  and variance 2 16σ =  (or standard deviation 

4σ = ). What is the probability that between 42 gallons and 58 gallons of milk will be sold per 

day in this store?  

( )Prob 42 gallons    58 gallons≤ Χ ≤  

= 42 gallons - 50 gallons X- 42 gallons + 50 gallonsProb
4 gallons 4 gallons

μ
σ

⎛ ⎞
≤ ≤⎜ ⎟

⎝ ⎠
 

= ( )8 8Prob Prob 2 2 0.95
4 4
−⎛ ⎞≤ Ζ ≤ = − ≤ Ζ ≤ =⎜ ⎟

⎝ ⎠
. 

What happened to the metric (gallon)? Why is the answer 0.95? 

What is the probability that the milk store will sell more than 50 gallons of milk on a given day? 

If this morning the store has 58 gallons of milk in storage, what is the probability that the store 

will run out of milk by the end of the day? 

 

Chi-Square ( )2χ  Distribution and the F Distribution 

The sample variance 

2

2 1
( )

1

n

i
i

X X
s

n
=

−
=

−

∑
 

is the point estimator of the population variance 2σ . To make inference about the population 

variance 2σ  using the sample variance 2s , the sampling distribution of ( ) 2 21n s σ−  applies and 

it follows a chi-square distribution with 1n −  degrees of freedom, where n  is the sample size of 

a simple random sample from a normal population. The Chi-square distribution is the sum of 
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squared independent standard normal variables 2 2

1

v

i
i

Zχ
=

⎛ ⎞=⎜ ⎟
⎝ ⎠

∑  with v  degrees of freedom.  The 

F distribution is a ratio of two Chi-Square distributions.  You will see both distributions later in 

the course. 

Student’s t-Distribution 

This distribution was named for William Sealy Gosset.  Gosset was an Oxford graduate in 

mathematics and worked for the Guinness Brewery in Dublin, Ireland.  To hide his identity, he 

published a paper about the t-distribution in 1908 under the pseudonym “A Student.”  When the 

population standard deviation σ  in the Z-score above is replaced by the sample standard 

deviation s , this score follows the t-distribtuion.  It is bell-shaped just like the normal 

distribution with mean 0.  It is more spread out than the standard normal distribution. This makes 

sense due to the fact that the standard deviation is being estimated and hence an element of 

uncertainty. The two tails are heavier than those of the standard normal distribution. The t-

distribution has a parameter called degrees of freedom (df).  In most applications, it is a 

function of the sample size but the specific formula depends on the problem.  The t-distribution 

is in fact a ratio of a standard normal distribution to a chi-square distribution.  When degrees of 

freedom increase, the t-distribution approaches the standard normal distribution.  If a small 

random sample is taken from a normal population or a large random sample is taken from any 

population, the standardized statistics xz
n
μ

σ
−

=  follows a standard normal distribution and 

xt
s n

μ−
=  follows a t-distribution with df = n-1.  As you may recall from your first statistics 

course, the confidence interval of a population mean is then either 2x z
nα
σ

±  (if σ  is known) 
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or 2
sx t
nα±  (with σ  estimated by s ) where ( )1 α−  is the confidence coefficient, 2zα  is the 

z -value providing an area 2α  in the upper tail of the standard normal probability distribution, 

2tα  is the t  value providing an area 2α  in the upper tail of the t  distribution with ( )1n −  

degrees of freedom.  The assumption here is that the population has a normal probability 

distribution.  Why do we need confidence intervals? 

Confidence Intervals: Why Do We Need Them? 

Constructing a confidence interval estimate of the unknown value of a population parameter is 

one of the most common statistical inference procedures.  A confidence interval is an interval of 

values computed from sample data that is likely to include the true population value.  The term 

confidence level is the chance that this confidence interval actually contains the true population 

value.  

 Suppose you wish to make an inference about the average income for all students at 

Sacramento State (population mean μ , a parameter).  From a sample of 45 Sacramento State 

students, one can come up with a point estimate (a sample statistic used to estimate a population 

parameter), such as $24,000.  But what does this mean?  A point estimate does not take into 

account the accuracy of the calculated statistic. We also need to know the variation of our 

estimate. We are not absolutely certain that the mean income for Sacramento State students is 

$24,000 since this sample mean is only an estimate of the population mean. If we collect another 

sample of 45 Sacramento State students, we would have another estimate of the mean. Thus, 

different samples yield different estimates of the mean for the same population. How close these 

sample means are to one another determines the variation of the estimate of the population mean. 

A statistic that measures the variation of our estimate is the standard error of the mean. It is 
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different from the sample standard deviation ( s ) because the sample standard deviation reveals 

the variation of our data. The standard error of the mean reveals the variation of our sample mean. 

The standard error of the mean is computed as  

x
ss
n

= , 

where s  is the sample standard deviation and n is the sample size. The standard error of the 

mean is a measure of how much error we can expect when we use the sample mean to predict the 

population mean. The smaller the standard error is, the more accurate our sample estimate is. 

In order to provide additional information, one needs to provide a confidence interval.  A 

confidence interval is a range of values that one believes to contain the population parameter of 

interest and places an upper and lower bound around a sample statistic. To construct a 

confidence interval, we need to choose a significance level. A 95% (=1-5% where 5% is the level 

of significance or α ) confidence interval is often used to assess the variability of the sample 

mean. A 95% confidence interval for the mean student income means we are 95% confident the 

interval contains the mean income for Sacramento State students. We want to be as confident as 

possible. However, if we increase the confidence level, the width of our confidence interval 

increases. As the width of the interval increases, it becomes less useful. What is the difference 

between the following 95% confidence intervals for the population mean? 

   [23000, 24500] and [12000, 36000]. 

As you may recall from your Stat 1 class, the confidence interval for the population mean 

is 2
sx z
nα±  in the large sample case and 2

sx t
nα±  in the small sample case, where x  is the 

sample mean, s  is the sample standard deviation, n  is the sample size, α  is the level of 

significance ( ( )1 α−  is the confidence coefficient), 2zα  is the z-value providing an area of 2α  
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in the upper tail of the standard normal probability distribution, and 2tα  is the t  value providing 

an area 2α  in the upper tail of the t  distribution with ( )1n −  degrees of freedom. 

Example: 

The following is a sample of regular gasoline price in Sacramento: 

4.419  4.419  4.569  4.579 4.459 4.409 4.439 4.399  4.539
4.559  4.499  4.439  4.459 4.429 4.399 4.339 4.359  4.379

The data are saved in the file gas.sf6.  Find the 95% confidence interval for the population mean.  

Given the small sample size of 18, the t-distribution should be used.  To find the 95% confidence 

interval for the population mean using this sample, you need to x , s , n , and 2tα .  The t table 

and other common tables can be found in any Stat 1 book or at 

http://www.statsoft.com/textbook/sttable.html.  Then 0.05α =  (from 1-0.95), 18n = , 4.45x = , 

0.0721s = , 18n = , degrees of freedom=18-1=17, and 0.05 2 2.11t = .  Plug these values into the 

formula 2
sx t
nα± : 0.07214.45 2.11 4.45 0.0359

18
± = ± , or (4.41, 4.49).  Thus, we are 95% 

confident that the true mean of regular gas price in Sacramento is between $4.41 and $4.49.  The 

formal interpretation is that in repeated sampling, the interval will contain the true mean of the 

population from which the data some 95% of the time. In this class, we will worry about looking 

up values in table. Instead, you can easily obtain the confidence interval using StatGraphics 

(Describe -> Numeric Data -> One-Variable Analysis, click on Tables option and select 

“Confidence Intervals”). 
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Hypothesis Testing 
 
When thinking about hypothesis testing, you are probably used to going through the formal steps 

in a very mechanical process without thinking very much about what you are doing.  Yet you go 

through the same steps every day.   

Consider the following scenario: 
 

I invite you to play a game where I pull a coin out and toss it.  If it comes up heads 
you pay me $1.  Would you be willing to play?  To decide whether to play or not, 
many people would like to know if the coin is fair.  To determine if you think the 
coin is fair (a hypothesis) or not (alternative hypothesis) you might take the coin 
and toss it a number of times, recording the outcomes (data collection).  Suppose 
you observe the following sequence of outcomes, here H represents a head and T 
represents a tail - 

 
H H H H H H H H T H H H H H H T H H H H H H 

 
What would be your conclusion?  Why? 
 

Most people look at the observations and notice the large number of heads (statistic) and 

conclude that they think the coin is not fair because the probability of getting 20 heads out of 22 

tosses is very small, if the coin is fair (sampling distribution).  It did happen; hence one rejects 

the idea of a fair coin and consequently does not wish to participate in the game. 

Notice the steps in the above scenario 
 

1. State hypothesis (H0: Coin is fair or 0.5π = ; H1: Coin is unfair or 0.5π ≠  ). 
2. Collect data (toss the coin 22 times). 
3. Calculate test statistic (count the number heads to be 20). 
4. Determine likelihood of outcome, if null hypothesis is true (the probability of obtaining 

20 heads out of 22 tosses if the coin is really fair is very small, 0.00006056, see 
calculation on the next page). 

5. If the likelihood is small, then reject the null hypothesis (clearly H0 should be rejected). 
If the likelihood is not small, then do not reject the null hypothesis.  

 
The one question that needs to be answered is “what is small?”  To quantify what small is 

one needs to understand the concept of a Type I error.  As you may recall from your Stat 1 

course, there are the null ( 0H ) and alternative ( 1H ) hypotheses.  Either one of them is true.  Our 
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test procedure should ideally lead to accept 0H  when 0H  is true and reject 0H  if 1H  is true, 

ideally.  However, this not always the case and errors could be made.  Type I error is made if a 

true  0H   is rejected.  Type II error is made if a false 0H   is accepted.  This is summarized 

below:  

    State of Nature 
    H0 True  H1 True 

Decision  Accept H0  Correct Decision  Type II Error 
  Reject H0  Type I Error  Correct Decision 

 

In practice, we control the maximum allowable probability of making a Type I error, the level of 

significance (α , alpha) for the test.  The probability of making a Type II error, or β  (beta), is 

not always controlled. For example, in a murder trial, the null hypothesis 0H  is the defendant is 

innocent while the alternative hypothesis 1H  is the defendant is guilty. A Type I error is made 

when the defendant is convicted (reject 0H ) if the defendant did not really commit the murder.  

A Type II error is made when the defendant is acquitted if the defendant really committed the 

murder.  Here committing a Type I error (an innocent defendant is convicted and could be 

executed) is clearly more serious than committing a Type II error (a guilty defendant is 

acquitted). 

P-Values 
 
In order to simplify the decision-making process for hypothesis testing, p-values are frequently 

reported when the analysis is performed on the computer.  In particular a p-value 4

5 refers to 

where in the sampling distribution the test statistic resides.  Hence the decision rules managers 

can use are: 

                                                 
5    Referred to frequently in statistical software as a Prob. Level or Sig. Value. 
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• If the p-value is <  alpha ( )α , then reject Ho 

• If the p-value is >=alpha ( )α , then do not reject Ho. 
 

The p-value may be defined as the probability of obtaining a test statistic equal to or more 

extreme than the result obtained from the sample data, given the null hypothesis H0 is really 

true. Go back to the coin tossing example where we have obtained 20 heads out of 22 tosses. 

The test statistic is 20. The probability of obtaining this statistic 20 heads out of 22 tosses under 

the assumption that the coin is fair (H0 is true) is about 0.000055 by apply the binomial 

probability function. The probability of the more extreme case of obtaining 21 heads out of 22 

tosses under the assumption that the coin is fair (H0 is true) is about 0.00000525. The probability 

of the most extreme case of obtaining 22 heads out of 22 tosses under the assumption that the 

coin is fair (H0 is true) is about 0.0000002384. The p-value is thus twice (for a 2-tailed test here) 

of the sum of these three probabilities: 2 X (0.000055+0.00000525+0.0000002384), or roughly 

0.000121, the probability of obtaining 20 or more heads out of 22 tosses. The common (arbitrary) 

value of alpha used is 0.05. Since this p-value is less than 0.05, we reject H0: Coin is fair. Indeed, 

if the coin is really fair, obtaining 20 heads out of 22 tosses is unlikely. In other chapters, we will 

rely on StatGraphics to obtain p-values. A last comment of this coin example is that even though 

we have not observed 21 heads or 22 heads out of 22 tosses, we include their probabilities in 

calculating the p-value! 
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A Confidence Interval Approach to Testing a Hypothesis of the Form 

0 0

1 0

:
:

H
H

μ μ
μ μ
=
≠

 

Select a simple random sample from the population and use the value of the sample mean x  to 

develop the confidence interval for the population mean μ . If the confidence interval contains 

the hypothesized value 0μ , do not reject 0H . Otherwise, reject 0H . 

Example: 

In 1991 the average interest rate charged by U.S. credit card issuers was 18.8%. Since that time, 

there has been a proliferation of new credit cards affiliated with retail stores, oil companies, 

alumni associations, professional sports teams, and so on. A financial officer wishes to study 

whether the increased competition in the credit card business has reduced interest rates. To do 

this, the officer will test a hypothesis about the current mean interest, μ , charged by U.S. credit 

card issuers. The null hypothesis to be tested is 0 : 18.8%H μ ≥ , and the alternative hypothesis is 

1 : 18.8%H μ < . If 0H  can be rejected in favor of 1H  at the 0.05 level of significance, the officer 

will conclude that the current mean interest rate is less than the 18.8% mean interest rate charged 

in 1991. To perform the hypothesis test, suppose that we randomly select n=15 credit cards and 

determine their current interest rates. The interest rates  in percentage for the 15 sampled cards 

are: 15.6, 17.8, 14.6, 17.3, 18.7, 15.3, 16.4, 18.4, 17.6, 14.0, 19.2, 15.8, 18.1, 16.6, 17.0 

The t test should be used (why?) and the rejection rule is to reject 0H  if the test statistics is less 

than 0.05, 1 15 1 1.761df ntα= = − = −− = −  (or if the p-value is less than 0.05). The value of the test statistic 

is: 

18.8 16.827 18.8 4.97 1.761
1.538 15

xt
s n
− −

= = = − < − . 
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Thus, 0H  is rejected.  

Steps in StatGraphics: Describe -> Numeric Data -> One-Variable Analysis … Select the 

variable in the Data box. Click on Tables Options (the button with 3 “T”) and select “Hypothesis 

Tests.” Right-mouse click and select “Pane Options.”  Enter “18.8” for Mean and select “less 

than” for alt. hypothesis. The results are: 

Hypothesis Tests for rate 
Sample mean = 16.8267 
Sample median = 17.0 

 
t-test 
------ 
Null hypothesis: mean = 18.8 
Alternative: less than 

 
Computed t statistic = -4.96975 
P-Value = 0.000102875 

 
Reject the null hypothesis for alpha = 0.05. 
 

The p-value 0.000102875 is less than the significance level 0.05. Therefore, 0H  is rejected. 

Exercise 

Use StatGraphics to test the following hypothesis for both SP500 and NASDAQ (data file: 

sp500nas.xls): 

H0: Daily return <= 0 

H1: Daily return > 0  

StatGraphics commands: Describe -> Numeric Data -> One-Variable Analysis and enter the 

variable name in the Data box.  Click on Tables Options (the button with 3 “T”) and select 

“Hypothesis Tests”.  By default, StatGraphics tests equal vs not equal to.  To change it, right 

mouse click in the Hypothesis Tests window and select “Pane Options”.  Select “Greater Than” 

under “Alt. Hypothesis”. 
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What is the test statistic? What is the p-value? What is your conclusion? Also obtain the 95% 

confidence intervals for both daily returns by clicking on Tables Options and selecting 

“Confidence Intervals”.  

Exercise 

Suppose the population mean earnings per share for restaurants and bars is $0.2 in the first 

quarter of 2008. In the second quarter of 2008, a sample of 12 restaurants & bars earnings per 

share data are obtained from the Wall Street Journal (see data file eps.sf6): 

0.24  0.52  0.46  0.31 0.71 0.06
0.03  0.48  0.43  0.27 0.28 0.17

 
a. Formulate the null and alternative hypotheses that can be used to determine whether the 

population mean earnings per share in the second quarter of 2008 differ from $0.2 from the first 

quarter of 2008. 

b. Using 0.05α = , what are the critical values for the t test statistic, and what is the rejection rule? 

c. Compute the sample mean. 

d. Compute the sample standard deviation. 

e. Compute the value of the t test statistic. 

f. What is your conclusion? 

g. What is the p-value? 
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Variation 
 
 
 

In real estate the 3 most important factors to remember are 
 

1. Location 
2. Location    
3. Location 

 
In DS 101, the three most important factors to remember are 

 
1. Variation 
2. Variation    
3. Variation 
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QUALITY -- COMMON VS SPECIFIC VARIATION 
 
During the past decade, the business community of the United States has been placing a great 

deal of emphasis on quality improvement.  One of the key players in this quality movement was 

the late W. Edwards Deming, a statistician, whose philosophy has been credited with helping the 

Japanese turn their economy around. 

One of Deming’s major contributions was to direct attention away from inspection of the final 

product or service towards monitoring the process that produces the final product or service with 

emphasis of statistical quality control techniques.  In particular, Deming stressed that in order to 

improve a process one needs to reduce the variation in the process. 

Common Causes and Specific Causes 

In order to reduce the variation of a process, one needs to recognize that the total variation is 

comprised of common causes and specific causes.  At any time there are numerous factors 

which individually and in interaction with each other cause detectable variability in a process and 

its output.  Those factors that are not readily identifiable and occur randomly are referred to as 

the common causes, while those that have large impact and can be associated with special 

circumstances or factors are referred to as specific causes. 

To illustrate common causes versus specific causes, consider a manufacturing situation where a 

hole needs to be drilled into a piece of steel.  We are concerned with the size of the hole, in 

particular the diameter, since the performance of the final product is a function of the precision 

of the hole.  As we measure consecutively drilled holes, with very fine instruments, we will 

notice that there is variation from one hole to the next.  Some of the possible common sources 

can be associated with the density of the steel, air temperature, and machine operator.  As long as 
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these sources do not produce significant swings in the variation they can be considered common 

sources.  On the other hand, the changing of a drill bit could be a specific source provided it 

produces a significant change in the variation, especially if a wrong sized bit is used! 

In the above example what the authors choose to list as examples of common and specific causes 

is not critical, since what is a common source in one situation may be a specific source in another 

and vice versa.  What is important is that one gets a feeling of a specific source, something that 

can produce a significant change and that there can be numerous common sources that 

individually have insignificant impact on the process variation. 

Stable and Unstable Processes 

When a process has variation made up of only common causes then the process is said to be a 

stable process, which means that the process is in statistical control and remains relatively the 

same over time.  This implies that the process is predictable, but does not necessarily suggest that 

the process is producing outputs that are acceptable as the amount of common variation may 

exceed the amount of acceptable variation.  If a process has variation that is comprised of both 

common causes and specific causes then it is said to be an unstable process, which means that 

the process is not in statistical control.  An unstable process does not necessarily mean that the 

process is producing unacceptable products since the total variation (common variation + 

specific variation) may still be less than the acceptable level of variation. 

In practice one wants to produce a quality product.  Since quality and total variation have an 

inverse relation (i.e. less {more} variation means greater {less} quality), one can see that a goal 

towards achieving a quality product is to identify the specific causes and eliminate the specific 

sources.1 What is left then is the common sources or in other words a stable process.  Tampering 

with a stable process will usually result in an increase in the variation that will decrease the 
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quality.  Improving the quality of a stable process (i.e. decreasing common variation) is usually 

only accomplished by a structural change, which will identify some of the common causes, and 

eliminate them from the process. 

For a complete discussion of identification tools, such as time series plots to determine whether a 

process is stable (is the mean constant?, is the variance constant?, and is the series random -- i.e. 

no pattern?) see the Stat Graphics Tutorial.  The runs test is an identification tool that is used to 

identify nonrandom data. 

QUALITY 
 

Common Causes and Specific Causes 

As stated earlier, and repeated here because of the concept’s importance, in order to reduce the 

variation of a process, one needs to recognize that the total variation is comprised of common 

causes and specific causes. Those factors, which are not readily identifiable and occur randomly 

are referred to as the common causes, while those which have a large impact and can be 

associated with special circumstances or factors are referred to as specific causes. 

It is important that one get a feeling of a specific source, something that can produce a significant 

change and that there can be numerous common sources which individually have insignificant 

impact on the processes variation. 

Stable and Unstable Processes 

When a process has variation made up of only common causes then the process is said to be a 

stable process, which means that the process is in statistical control and remains relatively the 

same over time.  This implies that the process is predictable, but does not necessarily suggest that 

the process is producing outputs that are acceptable as the amount of common variation may 

exceed the amount of acceptable variation.  If a process has variation, which is comprised of 
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both common causes and specific causes, then it is said to be an unstable process -- the 

process is not in statistical control.  An unstable process does not necessarily mean that the 

process is producing unacceptable products since the total variation (common variation + 

specific variation) may still be less than the acceptable level of variation. 

Tampering with a stable process will usually result in an increase in the variation, which will 

decrease the quality.  Improving the quality of a stable process (i.e. decreasing common variation)  

is usually only accomplished by a structural change, which will identify some of the common 

causes, and eliminate them from the process. 

Identification Tools 

There are a number of tools used in practice to determine whether specific causes of variation 

exist within a process.  In the remaining part of this chapter we will discuss how time series plots, 

the runs test, a test for normality and control charts are used to identify specific sources of 

variation.  As will become evident there is a great deal of similarity between time series plots and 

control charts.  In particular, the control charts are time series plots of statistics calculated from 

subgroups of observations, whereas when we speak of time series plots we are referring to plots 

of consecutive observations. 

Time Series Plots 

One of the first things one should do when analyzing a time series is to plot the data, since 

according to Confucius “A picture is worth a thousand words.”  A time series plot is a graph 

where the horizontal axis represents time and the vertical axis represents the units in which 

the variable of concern is measured.  For example, consider the following hypothetical example 

of a time series variable of concern: the number of defective iPods from quality inspection every 

day at a manufacturing plant.  Using the computer we are able to generate the following time 
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series plot.  Note that the horizontal axis represents the days and the vertical axis represents the 

number of defective iPods. 

 

When using a time series plot to determine whether a process is stable, what one is seeking is the 

answer to the following questions: 

  1.  Is the mean constant? 

  2.  Is the variance constant? 

    3.  Is the series random (i.e. no pattern)? 

Rather than initially showing the reader time series plots of stable processes, we show examples 

of nonstable processes commonly experienced in practice. 

 

 

             (a)                                                                               (b)                                                       
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  (c)                                                                                 (d)          

 

In figures (a) and (b) a change in mean is illustrated as in figure (a) there is an upward trend, 

while in figure (b) there is a downward trend.  In figure (c) a change in variance (dispersion) is 

shown, while figure (d) demonstrates a cyclical pattern, which is typical of seasonal data.  

Naturally, combinations of these departures are examples of nonstable processes. 

Runs Up and Down Test 

Frequently nonstable processes can be detected by visually examining their time series plots.  

However, there are times when patterns exist that are not easily detected.  A tool that can be used 

to identify nonrandom data in these cases is the runs test.  The logic behind this nonparametric 

test, is as follows: 

Between any two consecutive observations of a series the series either increases, 
decreases or stays the same.  Defining a run as a sequence of exclusively positive 
or exclusively negative steps (not mixed) then one can count the number of 
observed runs for a series.  For the given number of observations in the series, one 
can calculate the number of expected runs, assuming the series is random.  If the 
number of observed runs is significantly different from the number of expected 
runs then one can conclude that there is enough evidence to suggest that the series 
is not random.  Note that the runs test is a two tailed test, since there can be either 
too few of observed runs [once it goes up (down) it tends to continue going up 
(down)] or too many runs [oscillating pattern (up, down, up, down, up, down, 
etc..)].  To determine if the observed number significantly differs from the 
expected number, we encourage the reader to rely on statistical software 
(StatGraphics) and utilize the p-values that are generated. 
 

Normal Distribution? 

Another attribute of a stable process, which you may recall lacks specific causes of variation, is 

that the series follows a normal distribution.  To determine whether a variable follows a normal 
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distribution one can examine the data via a graph, called a histogram, and/or utilize a test which 

incorporates a Shapiro-Wilks test statistic. 

A histogram is a two dimensional graph in which one axis (usually the horizontal) represents the 

range of values the variable may assume and is divided into mutually exclusive classes (usually 

of equal length), while the other axis represents the observed frequencies for each of the 

individual classes.  Recalling the attributes of a normal distribution 

• symmetry 
• bell shaped 
• approximately 2/3 of the observations are within one (1) standard deviation of 

the mean 
• approximately 95 percent of the observations are within two (2) standard 

deviations of the mean 
 
one can visually check to see whether the data approximates a normal distribution.  Many 

software packages, such as Statgraphics, will overlay the observed data with a theoretical 

distribution calculated from the sample mean and sample standard deviation in order to assist in 

the evaluation.  Even so many individuals still find this evaluation difficult and hence prefer to 

rely on statistical testing.  The underlying logic of the statistical test for normality is to compare 

the quantiles of the fitting normal distribution to the quantiles of the data.  Statgraphics uses the 

Shapiro-Wilks test to see whether the data are normal.  We encourage the reader to rely on the 

results generated by their statistical software package especially the p-values that are calculated. 

 
Exercises 

 
The data for these exercises are in the file HW.SF.  For each series determine if the series are 

stationary (i.e. constant mean and constant variance), normal and random.  If any of the series 

violates any of the conditions (stationarity, normal and random); then, there is information and 

you only need to cite the violation. 
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You are encouraged to examine each series before looking at the solution provided.  The series 

are: 

HW.ONE 
HW.TWO 

HW.THREE 
HW.FOUR 
HW.FIVE 
HW.SIX 

 
For each series, the time units selection is “index” since the series is not monthly, daily or 

workdays in particular. 
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1. HW.ONE 

 
The time series (horizontal) plot shows (StatGraphics: Describe -> Time Series -> Descriptive 
Methods and select “ONE”): 
 

Time Series Plot for one
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Time Series Plot:   HW.ONE 
 
Stationarity? 
 
From the visual inspection, one can tell the series is stationary.  This may not be obvious to you 

at this time; however, it will be with more experience.  Remember, one way to determine if the 

series is stationary is to take snap shots of the series in different time increments, then impose 

them in different time intervals and see if they match up.  If you do that with this series, you will 

indeed see that is in fact stationary. 
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Normality? 

Shown below is the histogram that is generated by Statgraphics (Describe -> Probability 
Distributions -> Fitting Uncensored Data; Graphs Option -> Frequency Histogram) for the 
HW.ONE.6 
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Histogram:   HW.ONE 
 
 

Remember, a histogram shows the frequency with which the series occurs at different intervals 

along that horizontal axis.  From this, one can see that the distribution of HW.ONE appears 

somewhat like a normal distribution.  Not exactly, but in order to see how closely it does relate to 

theoretical normal distribution, we rely on the Shapiro-Wilks test.  Perform the following 

hypothesis test:    

     H0: the series is normal and 

     H1: the series is not normal. 
                                                 
6   To obtain such a graph using Stat graphics, we  selected the data file HW.SF and then selected Describe, 
Distribution Fitting, Fitting Uncensored Data, specify One (data series) ,  Graphs Options and Frequency Histogram. 
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As we can see from the table, the p-value (significance level) equals 0.126075 (StatGraphics: 

Describe -> Distribution Fitting -> Fitting Uncensored Data and click on Tables Option and 

select “Tests for Normality”).   

Tests for Normality for one 
Test Statistic P-Value 
Shapiro-Wilk W 0.969398 0.126075 
 

Since the p-value is greater than alpha (0.05), we do not reject the null hypothesis, and hence we 

feel that there is enough evidence to say that the distribution is normally distributed.  Thus, we 

are able to pass the series as being normally distributed at this time. 

Random? 

Relying upon the nonparametric Runs Up and Down test for randomness, we are now able to 

look at the series HW.ONE and determine if in fact we think the series is random.   

Test for Randomness              

 
Recall again that one will reject the null hypothesis of the series is random with the alternate 

being the series is not random, if there are either too few or too many runs.  Ignoring the 

information about the median, and just looking at what is said with regards to the number of runs 

of up and down, we note that for HW.ONE there are 74 runs as shown in the StatGraphics output 

below (StatGraphics: Describe -> Time Series -> Descriptive Methods and select “ONE”; Then 

click on Tables Option and select “Tests for Randomness”):   

Tests for Randomness of one 
 
(1) Runs above and below median 
     Median = 20.1911 
     Number of runs above and below median = 51 
     Expected number of runs = 51.0 
     Large sample test statistic z = -0.100509 
     P-value = 1.0 
 
(2) Runs up and down 
     Number of runs up and down = 74 
     Expected number of runs = 66.3333 
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     Large sample test statistic z = 1.71534 
     P-value = 0.0862824 
 
(3) Box-Pierce Test 
     Test based on first 24 autocorrelations 
     Large sample test statistic = 17.7378 
     P-value = 0.815537 
 

The expected number of runs is 66.3.  We do not need to rely on a table in a book as we stated 

before, but again we can just look at the p-value, which in this case is 0.086 (rounded).  So, since 

the p-value again is larger than our value of α = 0.05, we are able to conclude that we cannot 

reject the null hypothesis, and hence we conclude that the series may in fact be random. 

Summary 

Having checked the series for stationarity, normality and randomness, and not having rejected 

any of those particular tests, we are therefore able to say that we do not feel there is any 

information in the series based upon these particular criteria. 

 
 
2. ............................................................................................................................................... HW.TWO 
 
Stationarity? 
 
As one can see in the horizontal time series plot shown below, HW.TWO is not stationary. 
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Time Series Plot for two
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Time Series Plot:   HW.TWO 
 
In particular, if you notice at around 60, there is a shift in the series, so that the mean increases.  

Hence, for this process, there is information to look at the series because there is a shift in the 

mean.  Given that piece of information, we will not go to the remaining steps checking for 

normality and also for randomness.  If it is difficult for you to see the shift of the mean, take a 

snap shot for the series from say 0 to 20, and impose that on the values from 60 to 80, and you 

will see that there is in fact a difference in the mean itself. 

 

3. ........................................................................................................................................... HW.THREE 
Stationarity? 

The initial step of our process is once again to take a look at the visual plot of the data itself.  As 

one can see from the plot shown on the following page, there is a change in variance after the 

40th time period. 
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Time Series Plot for three
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Time Series Plot:  HW.THREE 
 
 
In particular, the variance increases substantially when compared to the variance in the first 40 

time periods.  This is the source of information and once again we will not consider the test for 

normality or the runs up and down test.  We have acquired information about the change of 

variance.   

If you were the manager of a manufacturing process and saw this type of plot, you would be 

particularly concerned about the increase in the variability at the 40th time period.  Some kind of 

intervention took place and one should be able to determine what caused that particular shift of 

variance. 

 4. HW.FOUR 

The time series plot of HW.FOUR is appears below: 
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Time Series Plot for four
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 Time Series Plot:   HW.FOUR 
 
Stationarity? 

As one can clearly see from this plot, the values are linear in that the values fall on a straight line.  

This series is clearly not stationary.  Once again, if one were to take a snap shot of the values say 

between 0 and 40, and just shift that over so they match up between 60 and 100, you have two 

separate lines clearly the means are not the same.  The mean is changing over time.  (We will 

discuss this kind of series when we are applying regression analysis techniques.) 

 5. HW.FIVE 

Shown below is the time series plot of the HW.FIVE: 
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Time Series Plot for five
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 Time Series Plot:   HW.FIVE 
 
Stationarity? 

The series is clearly stationary.  It has a constant mean and a constant variance as we move in 

time.  Once again, recall that one can take a snap shot of the series between a couple time periods, 

say the 0 and 20, and that will look very similar to any other increments of 20 time periods that 

are shown on the time series plot of the series.  We now think that the series may in fact be 

stationary.  Recall we also want to check for normality and the runs test.  Hence, we now 

perform these two tests. 
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Normality? 

Once again, utilizing Statgraphics options, we are able fit the series to a normal distribution.  A 

theoretical distribution is generated using the sample mean and standard deviation as the 

parameters.  Using those values, we can compare the frequency of our actual observations with 

the theoretical normal distribution.  Selecting the default options provided by Statgraphics, the 

following figure is displayed:  
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 Histogram:   HW.FIVE 

 
 
Note again that the distribution is not exactly normally distributed, but it may closely follow a 

normal distribution. To have an actual test, we revert back to the Shapiro-Wilks test and again 

using the default options provided by StatGraphics. 
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As one can see from the information provided above, the significance level is 0.161365.  Since 

this value is greater than 0.05, we are not able to reject the null hypothesis that the series is 

normal, and hence we feel the series may in fact be approximately normally distributed.  We now 

test the series for randomness. 

Random? 

Again, we use the nonparametric runs up and down test for randomness.  We focus our attention 

on the area discussing the actual number of runs up and down.  Note that the actual number is 71 

and the expected number is 66.3.  Is that discrepancy large enough for us to conclude that there 

are too many runs in the series, and hence possibly a pattern?  To answer that question, we rely 

on the z-value, which is 0.997291, and the following information, which provides the p-value, 

which is 0.319.  Since the p-value exceeds α = 0.05, we are not able to reject (or, retain) the null 

hypothesis that the series is random; thus we retain (or, fail to reject) the null hypothesis. 

Summary 

 As with HW.ONE, the series we just looked at, HW.FIVE, by visual inspection is stationary, 

and can pass for a normal distribution, and can pass for random series.  Hence, based upon these 

criteria, again, we are not able to find any information in this particular series. 
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6. HW.SIX 

Stationarity? Again, the first step of our investigation is to take a look at the time series plot  

Time Series Plot for six
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 Time Series Plot:   HW.SIX 
 

From this time series plot, there are two values that stand out.  We call those values outliers.  

They occur at approximately the 58th observation and about the 70th observation.  Besides these 

two observations, which may have important information of themselves, the rest of the series 

appears to be stationary. 

Normality? 

Using the sample statistics of the mean equaling 12.0819 and standard deviation equals to 

1.06121, we now compare our actual observations with the theoretical normal distribution.  As 

one can see from the histogram displayed below, the two outliers appear on the extreme points, 

but the rest of the series are very closely approximate in normal distribution. 
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Histogram for six
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 Histogram:   HW.SIX 
 
Going to the Shapiro-Wilks test, we noted that the p-value is 0.14703.  Since the value is greater 

than α = 0.05, we conclude that the series may in fact pass for a normal distribution.   

Randomness? 

To determine whether the series can pass the randomness, we once again utilize the 

nonparametric runs test.  The actual number of runs up and down is 72 verses the expected 

number of 66.3333.  The question we need to ask now is “Is the difference significant, which 

would imply that we have too many runs verses the theoretical distribution?”  As one can see 

from the p-value, which is 0.21662, we will not reject the null hypothesis that the series is 

random because the p-value again exceeds our stated value of alpha.  Thus, we are able to 

conclude that we feel the series may in fact be random. 
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Summary 

We have observed from HW.SIX that the series may in fact be stationary, normally distributed 

and random.  We are possibly concerned about this measure with the two outlier observations 

numbers 58 and 70.  As a manager, one will naturally want to ask the question what happened at 

those time periods, and see if there is information.  Note, without the visual plot, we will never 

expect the series to have information based solely upon the normality test and the runs test.  

Thus, one can see that the visual plot of the data is extremely important if we are to determine 

information in the series itself.  Of all the tests we had looked at, the visual plot is probably our 

most important one and one that we should always do whenever looking at a set of data.  
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CONTROL CHARTS 

In this section we first provide a general discussion of control charts, then follow up with a 

description of specific control charts used in practice. Although there are many different types of 

control charts, our objective is to provide the reader with a solid background with regards to the 

fundamentals of a few control charts that can be easily extended to other control charts. 

Control charts are statistical tools used to distinguish common and specific sources of variation. 

The format of the control chart, as shown in Figure 1 below, is a group made up of three lines 

where the center line = process average, upper control limit = process average + 3 standard 

deviations and lower control limit = process average - 3 standard deviations. 
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Figure 1.  Control Chart (General Format) 

The control charts are completed by graphing the descriptive statistic of concern, which is 

calculated for each subgroup. There are usually 20 to 30 subgroups used per each graph. The 

concept of how to form subgroups is very important and will be discussed later. For now it is 



 44

important to state that the horizontal axis is time, so that we can view the graphed points from 

earliest to latest as we read the graph. 

Recall that our goal in constructing control charts is to detect sources of specific variation, which, 

if they exist can be eliminated, thereby decreasing the variation of the process and hence 

increasing quality. Furthermore, recall that the existence of specific variation is the difference 

between an unstable process and a stable process. Therefore the detection of specific variation 

will be equivalent to being able to differentiate between unstable and stable processes. 

Since stable processes are made up of only common causes of variation, the control charts of 

stable processes will exhibit no pattern in the time series plot of the observations. Departures, i.e. 

a pattern in the time series plot, indicate an unstable process that means that specific sources of 

variation exist, which need to be exposed of and eliminated in order to reduce variation and 

hence improve quality.  As we consider each control chart, we will focus on whether there is any 

information in the series of observations that would be evident by the existence of a pattern in 

the time series plot of the observations. 

Rather than showing what the control chart of a stable process looks like, it is helpful to first 

consider charts of unstable processes that occur frequently on practice. 

 We present seven graphs on the following pages for consideration.  The following will 

summarize the seven examples displayed: 

Note that in Figure 2. Chart A the process appears to be fairly stable with the 
exception of an outliner (see subgroup 7). If this were the case then one would 
want to determine what caused that specific observation to be outside the control 
limits and based upon that source take appropriate action. 
In Figure 3, Chart B, note that there are two observations, close to each other that 
are outside the control limits. When this occurs there is much stronger evidence 
that the process is out of control than in Figure 2. Chart A.  Again one would need 
to investigate the reason for these outliers and take appropriate action. 
Illustrated in Figure 3. Charts C and D is the concept of a trend. Notice in Chart C 
there is a subset of observations that constitute a downward trend, while in Figure 
3. Chart D there is a subset that constitutes an upward trend. 
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In Figure 3, Chart E, a cyclical pattern is depicted. These types of patterns occur 
frequently when the process is subject to a seasonal influence. If this is the case, 
then one needs to account for the seasonality and make the necessary adjustments. 
Presented in Figure 3. Chart F, is a situation where there is a change in the level of 
a process. Notice how the level slides upward, thereby indicating a change in the 
level. In this situation, one would need to ascertain why the slide took place and 
then take appropriate action. 
The final case illustrated, Figure 3. Chart G, is one where there is a change in the 
variance (dispersion). Notice that the first part of the sequence has a much smaller 
variance than the latter part. Clearly an event occurred which altered the variance 
and needs to be dealt with appropriately. 
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Figure 2.  Chart A 
 
Charts B through F appear in Figure 3 on the next page. 
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Figure 3.  Charts B through G
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Types of Control Charts 

As we mentioned previously, there are a large number of different control charts that are used in 

practice but for our purposes we will consider just a few. For a given application the type of 

control chart that should be employed depends upon the type of data being collected. There are 

three general classes of data: 

• continuous data 
• classification data 
• count data 

Continuous data is measurable data such as thickness, height, cost, sales units, revenues, etc.  

The latter two classes (classification and count) are examples of attribute data. For classification, 

data is bi-polar, for example, success/failure, good/bad, yes/no or conforming/non-conforming. 

Count data is rather straightforward -- number of customers served during the lunch hour, 

number of blemishes per sheet (8’ by 4’) of particleboard, number of failed parts per case, and so 

forth. 

For many applications the data to be collected can be either continuous or attribute. For example, 

when considering the size of holes discussed earlier one can record the diameter in millimeters 

(continuous) or as simply acceptable or unacceptable (attribute).  Whenever possible, one should 

elect to record continuous data since fewer measurements are required per subgroup for 

continuous charts, 1 to 10, than for attribute charts which typically require 30 to 1000.  The 

fewer the number of observations needed, the quicker the possible response time when problems 

surface. 

We now consider examples for each of the control charts stated previously. First we will 

consider continuous data, in particular the X-bar and R charts. Then we will consider the P chart 

(classification data). Lastly we present the C chart (count data). 
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Continuous Data 

X-bar and R Charts 

The continuous variables burgers and cereal in the data set QCDATA.SF record hamburger 

weights and cereal fill weights with a subgroup size of 5. To construct the X-bar and R charts in 

StatGraphics, select SPC -> Control Charts -> Basic Variable Charts -> X-bar and R … and 

choose burgers for the observations box. Input 5 for Subgroup Numbers or size. See the X-bar 

and R charts below. 

X-bar Chart for burgers
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Range Chart for burgers
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X-bar Chart for cereal
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From the charts, Burger weights are in control while cereal fill weights are not in control. Why? 

How many observations are there for both burgers and cereal in the data set? How many data 

points are plotted in each control chart above? Why is the difference? 
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Below is another example to demonstrate the X-bar and R charts, we utilize data generated over 

a twenty-week period of time from the SR Mattress Co. The daily output of usable mattress 

frames for both shifts is shown below: 

SR Mattress Company 

Week Mon Tue Wed Thur Fri 

1 53 56 44 57 51 

2 46 58 53 59 46 

3 47 56 55 44 57 

4 58 53 46 44 51 

5 50 55 55 46 46 

6 54 55 44 51 53 

7 54 54 54 49 55 

8 46 58 52 51 58 

9 46 49 46 45 52 

10 54 47 55 45 47 

11 48 51 46 54 49 

12 58 45 55 44 45 

13 56 44 54 56 52 

14 49 48 55 53 57 

15 59 45 54 58 50 

16 53 50 44 55 53 

17 54 50 59 45 52 

18 58 51 55 47 55 

19 56 44 46 52 53 

20 54 47 51 54 59 
 

Table 1.  SR Mattress Company Data 

The first question one needs to answer before analyzing the data is “How will the subgroups be 

formed?” We will address this issue later, but to keep things simple, we will define the 

subgroups as being made up of the 5 daily outputs for each shift per week.  In their respective 
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time series plots, x-bar equals 51.42 with the lower and upper control limits of 44.931 and 

59.909, respectively. [When using StatGraphics, grid lines appear in the graphs and the control 

limits are not initially shown.  One can insert the control limits by left clicking on the graph 

(pane) and then right clicking in order to "pull up" the options selection.  We eliminated the 

background grids in order to highlight the other features. 
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Figure 4.  SR Mattress Company X-Bar and Range Chart 

  

From these charts, the X-bar chart and range chart, we can see that none of the values are outside 

the control limits, thereby suggesting a possible stable process. On closer examination one may 

see some possible patterns that should be investigated for possible sources of specific variation. 
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Do you see any such patterns? If so, what might be a possible scenario to describe the pattern 

and what type of action might management take if your scenario is true. 

Given the previous example, hopefully the reader has an intuitive feel for what X-bar charts and 

R charts represent. We will leave it to the computer to calculate the upper and lower control 

limits. 

Before moving on, we need to take another look at the question about how the subgroups were 

defined. The division described above will highlight differences between different weeks. 

However, what if there was a difference between the days of the workweek? For example, what 

if a piece of required machinery is serviced after closing every Wednesday, resulting in higher 

outputs every Thursday, would our sub-grouping detect such an impact? In this case one might 

choose to subgroup by day of the week.  Hopefully, one can see how the successful 

implementation of control charts may depend upon the design of the control chart itself that is a 

function of knowing as much as possible about possible sources of specific variation. 

Two final points about continuous variable control charts. The first is that when the subgroups 

are of size one, the X-bar chart is the same as a chart for the original series. In this case the R 

chart may be replaced by a moving average chart based upon past observations. The second point 

is that in our scenario we required each subgroup to be of the same size (equal number of 

observations). For example, what if there were holidays in our sample? In this case an R chart, 

where the statistic of concern is the range, could be replaced by an S chart, which relies on the 

sample standard deviation as the statistic of concern. In practice, the R charts are used more 

frequently with exceptions such as the holiday situation just noted. 
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P Charts 

The P chart is very similar to the X-bar chart except that the statistic being plotted is the sample 

proportion rather than the sample mean. Since the proportion deals with the percentage of 

successes 6

7 , clearly the appropriate data for P charts needs to be attribute data where the 

outcomes for each trial can be classified as either a success or a failure (conform or non-conform, 

yes or no, etc.).  The subgroup size must be equal so the proportion can be determined by 

dividing the outcome by the subgroup size. 

To illustrate the P chart, a situation is considered where we are concerned about the accuracy of 

our data entry departments work. In auditing their work over the last 30 days, we randomly 

selected a  

sample of 100 entries for each day and classify each entry as correct or incorrect. The results of 

this audit are as follows: 

  

 Day        #  Incorrect                Day        # Incorrect 

   1   2   16   1 
   2   7   17   5 
   3   6   18   9 
   4   2   19   6 
   5   4   20   4 
   6   3   21   3 
   7   2   22   3 
   8   6   23   5 
   9   6   24   3 
  10   2   25   6 
  11   4   26   6 
  12   3   27   5 
  13   6   28   2 
  14   2   29   3 
  15   4   30   4 
 

Table 2.  Number Incorrect Entries in Sample Size of 100 

Given the data above, one can easily calculate the proportions of incorrect entries per day by 

taking the number of incorrect entries and dividing by the total number of entries for that day, 

                                                 
7 Recall the binomial distribution where one of the parameters is the probability of success. 
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which in our example were 100 each day. This may seem to be an unnecessary task at this time, 

since we are essentially just scaling the data. This scaling, however, does allow us to work with 

the P statistic,  rather than the total number of occurrences that would produce another type of 

chart called the NP chart. We have chosen not to discuss the NP chart since it provides the same 

information as the P chart for subgroups of the same size, while the P chart allows us more 

flexibility, so that we can consider cases when the subgroups are not all of the same sample 

size. 7

8 The P chart for the data entry example is shown below. 
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Figure 5.  Proportion Control Chart 

 

                                                 
8 When the sample sizes are different the calculations become more complicated. For our purposes we will just note 
this and leave the details for the software programmers. 
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From the P chart displayed above, one can see that all of the observed values fall within the 

control limits and that there does not appear to be any significant pattern. One might be 

concerned with the value for the 18th observation that is .09 and look to see if a particular event 

triggered this larger value. Keep in mind, however, that common variation may very well cause 

this larger variation. 

C Charts 

The C chart is based upon the statistic that counts the number of occurrences in a unit, where the 

unit may be related to time or space. Whereas the P chart was related to the binomial distribution, 

the C chart is related to the Poisson distribution. To demonstrate the C chart we consider a 

situation where we are interested in the number of defective parts produced daily at the AKA 

Machine Shop. Over the past 25 days the number of defective parts per day are  shown below: 

  

 Day                   # Defective Parts Day  # Defective Parts 

  1    5  14    7 
  2   10  15    3 
  3    7  16    4 
  4    5  17    8 
  5    8  18    5 
  6    8  19    3 
  7    8  20    6 
  8    5  21   10 
  9    7  22    1 
 10    7  23    6 
 11   10  24    5 
 12    6  25    4 
 13    6 
 

Table 3.  Number of Defective Parts per Day 
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The C chart 8

9, which appears on the next page, shows that the process appears to be stable. In 

particular, there are no values outside the control limits, nor does there appear to be any 

systematic pattern in the data.  (Note:  no reference made to sample size.) 

.
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Figure 6.  Count Control Chart 

Conclusion 

In our discussion of control charts we first discussed the common attributes of different control 

charts available (center line, upper control limit and lower control limit) and focused on what one 

looks for in trying to detect sources of specific variation (outliers, trends, oscillating, seasonality, 

etc.).  We then looked at some of the most commonly used control charts in practice, namely the 

X-bar and R, P, and C control charts. 

                                                 
9 The notation in the StatGraphics software may confuse you as it relates the C chart option with “count of defects” 
and the U chart option with “defects per unit”. We are not discussing the U chart in class or this write up. The U 
chart allows for the “units” to change from subgroup to subgroup. 
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What differentiates the various control charts is the statistic that is being plotted.  Since different 

types of data can produce different types of statistics it is clear that the type of data available will 

suggest the type of statistic that can be calculated and hence the appropriate control chart. 

One final but important point is that the control charts generated, including those in this write up, 

frequently use the data set being examined to construct centerline and control limits (upper and 

lower).  The problem this may cause is that if the process is unstable then the data it generates 

may alter the components of the control chart (different centerlines and different control limits) 

and hence be unable to detect problems that may exist.  For this reason, in practice, when a 

process is believed to be stable the resulting statistics are frequently used to establish the control 

limits (center, upper, and lower) for future windows.  What we mean by window is that if we 

decide to monitor say 30 subgroups at a time, as time evolves subgroups are added and 

consequently the same number are dropped from the other end, hence a revolving window. 

Useful software, such as StatGraphics, will allow one to specify the limits as an option. 

In summary: 
 

• X-bar and Range charts are used when sample subgroups are of equal 
size, sample subgroups are taken at equal time intervals, and the 
subgroup means and range of highest and lowest values are of 
interest.   

 
• Proportion charts are used when samples are of equal size and the 

defect proportions are of interest. 
 
• Count charts are used when either the sample size is unknown or the 

sample sizes are not uniform.  
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 TRANSFORMATIONS & RANDOM WALK 

In the previous chapter we focused our attention on viewing variability as being comprised of 

two parts, common variation and specific variation.  With the exception of manufacturing 

systems, most economic variables when viewed in their measured formats demonstrate sources 

of specific variation.  In data analysis, whether we are trying to forecast or explain economic 

relationships, our goal is to model those sources of specific variation with the result being that 

only common variation is “left over.”  This can be depicted by the expression: 

   ACTUAL = FITTED + ERROR.  

Where the FITTED values are generated from the model (specific variation), the ACTUAL values 

are the observed values and the ERROR values represent the differences and are a function of 

common sources of variation.  If the common sources of variation of the model appear to be 

random, the model may better predict future outcomes as well as providing a more thorough 

understanding of how the process works. 

Random Walk 

One of the simplest, yet widely used models in the area of finance is the random walk model.  A 

common and serious departure from random behavior is called a random walk.  By definition, a 

series is said to follow a random walk if the first differences are random.  What is meant by first 

differences is the difference from one observation to the next, which if you think about as the 

steps of a process and the sequence of steps as a walk, suggest the name random walk.  (Do not 

be mislead by the term “random” in “random walk.”  A random walk is not random.)  Relating 

this back to the equation we see that the ACTUAL values are the observed values for the current 

time period, while the FITTED values are the last periods observed values. 

Hence we can write the equation as:  
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 Xt  = Xt-1 + et 

 where: Xt   is the value in time period t, 
  Xt-1 is the value in time period t-1 (1 time period before) 
  et    is the value of the error term in time period t. 

Since the random walk was defined in terms of first differences, it may be easier to see the model 

expressed as: 

Xt - Xt-1 = et  

Therefore, as one can see from the resulting equation, the series itself is not random.  However, 

when we take the first differences the result is a transformed series  Xt - Xt-1,  which is random. 

To illustrate the random walk model, we consider the series of stock prices for Nike as it was 

posted on the New York Stock Exchange at the end of each month, from January 2000 to June 

2008.  The time sequence plot of the series Nike (see data file) is shown in the figure below. 

 

Figure 1.  Times Sequence Plot of Nike 
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As one can see the original series for Nike does not appear to be random.  In fact, when the 

nonparametric runs test is performed on the original series, the p-value is 0.000020, which 

indicates compelling evidence to reject the null hypothesis.  Hence, the original series of Nike is 

not random. 

    H0:  The [original] series is random10 
    H1:  The [original] series is NOT random 

Now consider the first differences of Nike with the time series plot shown below: 
 

 
 

Figure 2.  First Differences of Nike  
 
 

As we can see from the time series plot, by taking first differences the transformed series appears 

to be random.  (Note that we are only discussing whether the series is random, nothing is being 

said about it being stable since the variance increases with time.)  To confirm our visual 

conclusion that the differenced series is random, we perform the runs up and down test and find 
                                                 
10   The use of [original] is for emphasis only ... it is not normally used when stating the null hypothesis. 
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out that the p-value is 0.5965.  The p-value exceeds α = 0.05 and thus provides supporting 

evidence to retain the null hypothesis, the differenced series is random, and thus the stock price 

of Nike tends to follow a random walk model. 

    H0:  The (first differenced) series is random11 
    H1:  The (first differenced) series is NOT random 

 

Information is not lost by differencing.  In fact, use of differencing, or inspecting changes, is a 

very useful technique for examining the behavior of meandering time series.  Stock market data 

generally follows a random walk and by differencing, we are able to get a simpler view of the 

process.  

 

 

 

 

 

                                                 
11   Use of [first differenced] for emphasis only.  (See footnote 10.) 
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MODEL BUILDING 
 
Building a statistical model is an iterative process as depicted in the following flowchart: 
 

 
 
 
As one can see, when constructing a statistical model for use there are three phases that must be 

followed.  In fact most models used in practice require going through the three phases multiple 

times, as seldom is the model builder satisfied without refining the initial model at least once. 

Each of these phases is discussed below in general terms, for all statistical models, and later will 

be described in detail for specific models (regression, time series, etc.) 

Specification 

The specification or identification phase involves answering two questions: 

  1. What variables are involved? 

and 

  2. What is the mathematical relationship between variables? 
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When establishing a mathematical model there are parameters involved which are unknown to 

the practitioner.  These parameters need to be estimated, hence, the need for the estimation phase 

which is discussed in the next section.  When answering the questions above, it is essential that 

the model builder use economic theory to help establish a tentative model.  A model that is based 

upon theory has a much better chance of being useful than one based upon guesswork. 

Estimation 

As mentioned previously, the models developed in the specification phase possess parameters 

that need to be estimated.  To obtain these estimates, one gathers data and then determines the 

estimates that best fit the data.  In order to obtain these estimates, one has to establish a criterion 

that can be used to ascertain whether one set of estimates is “better” than another set.  The most 

commonly used criterion is referred to as the least squares criterion which, in simple English, 

means that the error terms which represent the differences between the actual and fitted values, 

when squared and added up will be minimized.  The reason for using the squared terms is so that 

the positive and negative residuals do not cancel each other out.  For our purposes, it will suffice 

to state that the computer will generate these values for us by using StatGraphics Plus. 

Diagnostic Checking 

The third phase is called the diagnostic checking phase and basically involves answering the 

question: 

  Is the model adequate? 

If the answer to the above question is no, then something about the model needs modification 

and the builder returns to the specification phase and goes through the entire three phase process 

again.  If the answer to the above question is yes, then the model is ready to use. 
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When in the process of discerning whether the model is adequate, a number of attributes about 

the model need to be considered: 

1. How well does the model fit the data? 

2. Do the residuals (actual - fitted) from the model contain any information that 

should be incorporated into the model? (i.e. is there information in the data 

that has been ignored in the creation of the model.) 

3. Does the model contain variables that are useless and hence should be 

eliminated from the model? 

4. Are the estimates derived from the estimation phase influenced 

disproportionately by certain observations (data)? 

5. Does the model make economic sense? 

6. Does the model produce valid results? 

 

As stated previously, when the model builder is able to answer affirmatively to each of the above 

questions, and only then, are they able to use the model for their desired purpose. 
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REGRESSION ANALYSIS 
 
In our discussion of regression analysis, we will first focus our discussion on simple linear 

regression and then expand to multiple linear regression.  The reason for this ordering is not 

because simple linear regression is so simple, but because we can illustrate our discussion about 

simple linear regression in two dimensions and once the reader has a good understanding of 

simple linear regression, the extension to multiple regression will be facilitated.  It is important 

for the reader to understand that simple linear regression is a special case of multiple linear 

regression.  Regression models are frequently used for making statistical predictions -- this will 

be addressed at the end of this chapter.   

Simple Linear Regression 

Simple linear regression analysis is used when one wants to explain and/or forecast the variation 

in a variable as a function of another variable.  To simplify, suppose you have a variable that 

exhibits variable behavior, i.e. it fluctuates.  If there is another variable that helps explain (or 

drive) the variation, then regression analysis could be utilized.  The variable one wants to explain 

(or predict or forecast) is called the dependent variable, usually denoted y .  The variable one 

uses to explain/forecast is called the independent variable, usually denoted x .   The simple 

linear regression model is 

0 1y xβ β ε= + + . 

Thus, y  is a linear function of x  plus an error term ε .  y  and x  are the data.  0β  and 1β  ( β , 

or beta, is the Greek letter) are the parameters that need to be estimated from the data.  ε  (the 

Greek letter epsilon) is a random variable that we call the error term, which accounts for the 

variation in the dependent variable y  that cannot be explained by the model, the linear 
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relationship between x  and y .  This error term is assumed to be common variation with the 

properties of stationary (constant mean and constant variance), independent (random), and 

normal.  To be more specific, the assumptions of the error term are listed below: 

1. Stationary: constant mean and constant variance. 

 Constant mean: the average value of the error term is 0. 

 Constant variance: the variance of the error term is the same for all values of the 

 independent variable. 

 To check this assumption, apply the identification tool:  

 Time series plot (StatGraphics: Describe -> Time Series -> Descriptive Methods). 

2.   Independent (Random): the values of the error term are independent (random). 

 To check this assumption, apply the identification tool: Runs up and down test 

      (StatGraphics: after time series plot above, Tables Options and select Tests for 

 Randomness). 

3.   Normal: the error term is a normally distributed random variable. 

 To check this assumption, apply the identification tool: 

 Shapiro-Wilks test (StatGraphics: Describe -> Distributions Fitting -> Fitting  

 Uncensored Data, then Tables option and check Tests for Normality). 

But how do we find the error term so that we can apply these three tools to check whether the 

error term satisfies the three assumptions?  The error term ε  depends on the parameters 0β  

and 1β , which are unknown fixed constants and need to be estimated.  Thus, the error term ε  

needs to be estimated too.  We will discuss the estimation process below using an example. 
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Suppose an auto dealership wants to predict a salesman’s sales performance based on his 

years of experience.  Thus, the dependent variable is sales and the independent variable is 

years of experience.  The data are provided in the following table: 

 
 
 

The dependent variable y  is annual sales and the independent variable x  is years 

of experience.  We add subscript i  to the original simple linear regression model 

to denote which observation (row) in the table: 

0 1i i iy xβ β ε= + + , 1, 2, ,i n= ⋅⋅⋅ . 

In this data set, there are 10 observations (rows) and thus n , the sample size, is 

10.  For example, for the fifth salesperson, 5i = , 5 6x = , and 5 103y = .  To obtain 

the estimates for 0β  and 1β , we apply the least squares method proposed by 

Carl Friedrichh Gauss.  Write the equation above as ( )0 1i i iy xε β β= − + .  Since 

0β  and 1β  are not knowable and can only be estimated from the data (so is iε ), 

we replace these three parameters with their estimates and then find these 
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estimates with the least squares method: ( )0 1i i ie y b b x= − + , where ie  is called 

the residual (estimate of the error term iε ).  0 1ˆi iy b b x= +  is the estimated 

regression equation where ˆiy  is the estimated value of the dependent variable iy , 

0b  is the intercept, and 1b  is the slope, and ˆi i ie y y= −  is the residual.  To find the 

estimates 0b  and 1b , minimize the sum of squared residuals: 

2min ie∑ , or ( )2ˆmin i iy y−∑ , or ( ) 2
0 1min i iy b b x− +⎡ ⎤⎣ ⎦∑ . 

Notice that residual ie  is the difference between the observed iy  and the 

estimated ˆiy .  Apply calculus we can easily find the estimates 0b  and 1b : 

 

 

   
 
 

where x  and y  are the sample means.  The following table shows how to find 

the estimates 0b , 1b , and ie .  0 1ˆi iy b b x= +  is the least squares line, or the best 

fitting line of the data points.  Usually we perform simple linear regression with 

the help of a software package such as StatGraphics.  The following output shows 

the estimates from StatGraphics (Relate -> One Factor -> Simple Regression: 

Sales for Y and Experience for X). 
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Regression Analysis - Linear model: Y = a + b*X 
----------------------------------------------------------------------------- 
Dependent variable: Sales 
Independent variable: Experience 
----------------------------------------------------------------------------- 
                                        Standard          T 
Parameter       Estimate         Error           Statistic        P-Value 
----------------------------------------------------------------------------- 
Intercept           80.0           3.07534          26.0133         0.0000 
Slope                4.0             0.386843        10.3401         0.0000 
----------------------------------------------------------------------------- 
 
 
                           Analysis of Variance 
----------------------------------------------------------------------------------------- 
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value 
----------------------------------------------------------------------------------------- 
Model                      2272.0             1       2272.0          106.92       0.0000 
Residual                    170.0             8        21.25 
----------------------------------------------------------------------------------------- 
Total (Corr.)              2442.0      9 
 
Correlation Coefficient = 0.964565 
R-squared = 93.0385 percent 
R-squared (adjusted for d.f.) = 92.1683 percent 
Standard Error of Est. = 4.60977 
Mean absolute error = 3.6 
Durbin-Watson statistic = 3.22353 (P=0.0027) 
Lag 1 residual autocorrelation = -0.705882 
 

 
Table 1 Simple Linear Regression Output 

 
The estimated regression equation is ˆ 80 4*Sales Experience= +  where the “hat” above 

“Sales” indicates this is the predicted (estimated) value of “Sales” as opposed to the 

observed value of “Sales.”  This fitted regression line is shown in the graph below. 
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Plot of Fitted Model
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Once we have the estimated regression equation 0 1ˆi iy b b x= + , or  ˆ 80 4*Sales Experience= + , 

we can compute the residuals (estimates of the error term) ( )0 1ˆi i i i ie y y y b b x= − = − + , or 

ˆ
ie Sales Sales= − . In StatGraphics, residuals can be obtained by selecting the Save Results 

button in the simple regression output and checking “residuals.” The plot below displays the 

residuals versus the explanatory variable Experience. 
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Plot of sale.RESIDUALS vs Experience
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So far, we have been estimating the parameters and the process is the estimation phase.  The 

next step is the diagnostic checking phase.  The purpose of the diagnostic checking phase is to 

evaluate the model’s adequacy.  First of all, to see how well the estimated model fits the 

observed data, we examine the R-squared (R2) value, which is commonly referred to as the 

coefficient of determination.  The R2 value denotes the amount of total variation in the 

dependent variable that is explained by the fitted model.  Hence, for our example, around 93% of 

the variation in SALES is explained by our fitted model.  Another way of viewing the same thing 

is that the fitted model does not explain around 7% of the total variation in SALES. 

A second question we are able to address is whether the independent variable, Experience, is a 

significant contributor to the model in explaining the dependent variable, Sales.  Thus, for our 

example, we ask whether Experience is a significant contributor to our model in terms of 

explaining Sales.  The mathematical test of this question can be denoted by the hypothesis: 

H0 : β1 = 0 
H1 : β1 ≠ 0 
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which makes sense, given the previous statements, when one remembers that the model we 

proposed is:    Sales = 0β + 1β Experience + Error 

Note: If 1β = 0, (i.e. the null hypothesis is true), then changes in Experience will not produce a  

change in Sales.  From Table 1, we note that the p-value (probability level) for the hypothesis 

test, which resides on the line labeled slope, is 0.0000 (truncation).  Since the p-value is less than  

α=0.05, we reject the null hypothesis and conclude that Experience is a significant independent 

(explanatory) variable for the model, where Sales is the dependent variable. 

Note: The p-value is obtained from the t test statistic which is calculated as follows: 

1

1

0 test statistic
Standard Error of  

bt
b

−
= , 

where 1b  is the slope estimate 4, the standard error of 1b  is 0.386843 (these numbers are from the  
 
StatGraphics output in Table 1), and 0 is from the right hand side of H0 ( H0 : β1 = 0). 
 

We stated the assumptions of the error terms (ε ), which are unknown like parameters.  The 

residuals we just saved are estimates of the error terms and we need to check whether the 

residuals satisfy the assumptions.  The assumptions along with the StatGraphics commands for 

checking the residuals are listed below again: 

1.   Stationary: constant mean and constant variance. 

 Constant mean: the average value of the error term is 0. 

 Constant variance: the variance of the error term is the same for all values of the 

 independent variable. 

 To check this assumption, apply the identification tool:  

 Time series plot (StatGraphics: Describe -> Time Series -> Descriptive Methods). 

2.   Independent (Random): the values of the error term are independent (random). 
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 To check this assumption, apply the identification tool: Runs up and down test 

      (StatGraphics: after time series plot above, Tables Options and select Tests for 

 Randomness). 

3.   Normal: the error term is a normally distributed random variable. 

 To check this assumption, apply the identification tool: 

 Shapiro-Wilks test (StatGraphics: Describe -> Distributions Fitting -> Fitting 

 Uncensored Data), then Tables option and check Tests for Normality). 

Exercise: Are the residuals from the sales example above stationary?  Are they independent?  

Are they normal?  Are the assumptions of the error term valid? 

An Example 

Suppose you are a manager for the Pinkham family, which distributes a product 
whose sales volume varies from year to year, and you wish to forecast the next 
year’s sales volume.  Using your knowledge of the company and the fact that its 
marketing efforts focus mainly on advertising, you theorize that sales might be a 
linear function of advertising and other outside factors.  Hence, the model’s 
mathematical function is: 

 
SALESt = 0β + 1β ADVERTt + tε , 

where:  SALESt  represents Sales Volume in year t 
  ADVERTt represents advertising expenditures in year t 
  0β  and 1β  are parameters (unknown fixed constants) 
  and tε    is the error,  the difference between the actual sales  
    volume value in year t and the fitted sales volume value  
    in year t 

 
Note: the Error term can account for influences on sales volume other than advertising. 
 

Ignoring the error term one can clearly see that what is being proposed is a linear equation 

(straight line) where the SALESt value depends on the value of ADVERTt.  Hence, we refer to 

SALESt as the dependent variable and ADVERTt as the explanatory variable. 

To see if the proposed linear relationship seems appropriate we gather some data and plot the 

data to see if a linear relationship seems appropriate.  The data collected is yearly, from 1907 - 
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1960, hence, 54 observations.  That is for each year we have a value for sales volume and a 

value for advertising expenditures, which means we have 54 pairs of data. 

 

   
  Year   Advert    Sales 
 
  1907   608    1016 
  1908   451    921 
    .    .     . 
    .    .     . 
    .    .     . 
    .    .     . 
  1959   644    1387 
  1960   564    1289 
 

 
To get a feel for the data, we plot (called a scatter plot) the data as is shown as Figure 1.  

(Hereafter, the scatter plot will be called plot.) 
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 Figure 1.   Scatter Plot of Sales vs. Advertising 
 

As can be seen, there appears to be a fairly good linear relationship between sales (SALES) and 

advertising (ADVERT) (at least for advertising less than 1200  ~ note scaling factor for ADVERT 
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x 1000).  At this point, we are now ready to conclude the specification phase and move on to the 

estimation phase where we estimate the best fitting line. 

Summary:  For a simple linear regression model, the functional relationship is:   

0 1t t tY Xβ β ε= + +  and for our example the dependent variable Yt is SALESt and the explanatory 

(independent) variable is ADVERTt.  We suggested our proposed model in the example based 

upon theory and confirmed it via a visual inspection of the scatter plot for SALESt and ADVERTt.  

Note:  In interpreting the model we are saying that SALES depends upon ADVERT in the same 

time period and some other influences, which are accounted for by the ERROR term. 

Estimation   

We utilize the computer to perform the estimation phase.  In particular, the computer will 

calculate the “best” fitting line, which means it will calculate the estimates for 0β  and 1β .   

 

 

 

 

results are 

 

 

 

 

 
Table 2. 

Since 0β  is the intercept term and 1β  represents the slope we can see that the fitted line is: 
 

SALESt = 488.8 + 1.4 ADVERTt 

Regression Analysis - Linear model: Y = a + b*X
-----------------------------------------------------------------------------
Dependent variable: sales
Independent variable: advert
-----------------------------------------------------------------------------
                               Standard          T
Parameter       Estimate         Error       Statistic        P-Value
-----------------------------------------------------------------------------
Intercept        488.833        127.439        3.83582         0.0003
Slope            1.43459       0.126866        11.3079         0.0000
-----------------------------------------------------------------------------

                           Analysis of Variance
-----------------------------------------------------------------------------
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value
-----------------------------------------------------------------------------
Model                   1.50846E7      1    1.50846E7     127.87       0.0000
Residual                6.13438E6     52     117969.0
-----------------------------------------------------------------------------
Total (Corr.)            2.1219E7     53

Correlation Coefficient = 0.843149
R-squared = 71.0901 percent
Standard Error of Est. = 343.466
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The rest of the information presented in Table 2 can be used in the diagnostic checking phase 

that we discuss next. 

Diagnostic Checking   

Once again the purpose of the diagnostic checking phase is to evaluate the model’s adequacy.  

To do so, at this time we will restrict our analysis to just a few pieces of information in Table 2. 

First of all, to see how well the estimated model fits the observed data, we examine the R-

squared (R2) value, which is commonly referred to as the coefficient of determination.  The R2 

value denotes the amount of variation in the dependent variable that is explained by the fitted 

model.  Hence, for our example, 71.09 percent of the variation in SALES is explained by our 

fitted model.  Another way of viewing the same thing is that the fitted model does not explain 

28.91 percent of the variation in SALES. 

A second question we are able to address is whether the explanatory variable, ADVERTt, is a 

significant contributor to the model in explaining the dependent variable, SALESt.  Thus, for our 

example, we ask whether ADVERTt is a significant contributor to our model in terms of 

explaining SALESt.  The mathematical test of this question can be denoted by the hypothesis: 

 
H0 : β1 = 0 
H1 : β1 ≠ 0 

 
which makes sense, given the previous statements, when one remembers that the model we 

proposed is:    SALESt = β0 + β1 ADVERTt + ERRORt 

Note: If β1 = 0, (i.e. the null hypothesis is true), then changes in ADVERTt will not produce a 

change in SALESt.  From Table 2, we note that the p-value (probability level) for the hypothesis 

test, which resides on the line labeled slope, is 0.00000 (truncation).  Since the p-value is less 
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than α =. 05, we reject the null hypothesis and conclude that ADVERTt is a significant 

explanatory variable for the model, where SALESt is the dependent variable. 

An Example  
 
To further illustrate the topic of simple linear regression and the model building 
process, we consider another model using the same data set.  However, instead of 
using advertising to explain the variation in sales, we hypothesize that a good 
explanatory variable is to use sales lagged one year.  Recall that our time series 
data is in yearly intervals, hence, what we are proposing is a model where the 
value of sales is explained by its amount one time period (year) ago.  This may not 
make as much theoretical sense [to many] as the previous model we considered, 
but when one considers that it is common in business for variables to run in cycles, 
it can be seen to be a valid possibility. 
 

Plot of sales vs lag(sales,1)
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Figure 2.   Plot of Sales vs. Lag(Sales,1) 

 
 

 
Looking at Figure 2 as shown above, one can see that there appears to be a linear relationship 

between sales and sales one time period before.  Thus the model being specified is: 

SALESt = 0β + 1β SALESt-1 + Errort 
 
Where:  SALESt  represents sales volume in year t 
 SALESt-1 represents sales volume in year t-1 

0β  and 1β  are parameters (unknown fixed constants) 
and tε    is the error,  the difference between the actual sales volume value in year  
  t and the fitted sales volume value in year t 
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Estimation   
 
Using the computer, (StatGraphics software), we are able to estimate the parameters 0β  and 1β  

as is shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

Hence, the fitted model is: 

SALESt = 148.30 + 0.92 SALESt-1 

Diagnostic Checking   

In evaluating the attributes of this estimated model, we can see where we are now able to fit the 

variation in sales better, as R2, the amount of explained variation in sales, has increased from 

71.09 percent to 86.60 percent.  Also, as one probably expects, the test of whether SALESt-1 does 

not have a significant linear relationship with SALESt is rejected.  That is, the p-value for  

    H0:  β1 = 0 
     H1:  β1 ≠ 0 

Regression Analysis - Linear model: Y = a + b*X
-----------------------------------------------------------------------------
Dependent variable: sales
Independent variable: lag(sales,1)
-----------------------------------------------------------------------------
                               Standard          T
Parameter       Estimate         Error       Statistic        P-Value
-----------------------------------------------------------------------------
Intercept        148.303          98.74        1.50196         0.1393
Slope           0.922186       0.050792        18.1561         0.0000
-----------------------------------------------------------------------------

                           Analysis of Variance
-----------------------------------------------------------------------------
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value
-----------------------------------------------------------------------------
Model                   1.77921E7      1    1.77921E7     329.64       0.0000
Residual                2.75265E6     51      53973.5
-----------------------------------------------------------------------------
Total (Corr.)           2.05447E7     52

Correlation Coefficient = 0.9306
R-squared = 86.6017 percent
Standard Error of Est. = 232.322
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 is less than alpha (.00000 < .05).  There are other diagnostic checks that can be performed but 

we will postpone those discussions until we consider multiple linear regression.  Remember: 

simple linear regression is a specific case of multiple linear regression. 

Update 

At this point, we have specified, estimated and diagnostically checked (evaluated) two simple 

linear regression models.  Depending upon one’s objective, either model may be utilized for 

explanatory or forecasting purposes. 

Using Model 

As discussed previously, the end result of regression analysis is to be able to explain the 

variation of sales and/or to forecast value of SALESt.  We have now discussed how both of these 

end results can be achieved. 

Explanation 

As suggested by Table 1 and 2, when estimating the simple linear regression models, one is 

calculating estimates for the intercept and slope of the fitted line ( 0β  and 1β  respectively).  The 

interpretation associated with the slope ( 1β ) is that for a unit change in the explanatory variable 

it represents the respective change in the dependent variable along the forecasted line.  Of course, 

this interpretation only holds in the area where the model has been fitted to the data.  Thus usual 

interpretation for the intercept is that it represents the fitted value of the dependent variable when 

the independent (explanatory) variable takes on a value of zero.  This is correct only when one 

has used data for the explanatory variable that includes zero.  When one does not use values of 

the explanatory variable near zero, to estimate the model, then it does not make sense to even 

attempt to interpret the intercept of the fitted line. 
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Referring back to our examples, neither data set examined values for the explanatory variables 

(ADVERTt and SALESt-1) near zero, hence we do not even attempt to give an economic 

interpretation to the intercepts.  With regards to the model: 

SALESt = 488.83 + 1.43 ADVERTt 

the interpretation of the estimated slope is that a unit change in ADVERT ($1,000) will generate, 

on the average, a change of 1.43 units in SALESt ($1,000).  For instance, when ADVERTt 

increases (decreases) by $1,000 the average effect on SALESt will be an increase (decrease) of 

$1,430.  One caveat, this interpretation is only valid over the range of values considered for 

ADVERT, which is the range from 339 to 1941 (i.e., minimum and maximum values of 

ADVERT). 

Forecasting 

Calculating the point estimate with a linear regression is a very simple process.  All one needs to 

do is substitute the specific value of the explanatory variable, which is being forecasted, into the 

fitted model and the output is the point estimate. 

For example, referring back to the model: 

SALESt  =  488.8 + 1.4 ADVERTt 

if one wishes to forecast a point estimate for a time period when ADVERT will be 1200 then the 

point estimate is: 

2168.8  =  488.8 + 1.4 (1200) 

Deriving a point estimate is useful, but managers usually find more information in confidence 

intervals.  For regression models, there are two sets of confidence intervals for point forecasts 

that are of use as shown in Figure 3 on the next page. 
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  Figure 3. Regression of Sales on Advertising       

Viewing Figure 3 as shown 1

12, one can see two sets of dotted lines, each set being symmetric 

about the fitted line.  The inner set represents the limits (upper and lower) for the mean response 

for a given input, while the other set represents the limits of an individual response for a given 

input.  It is the outer set that most managers are concerned with, since it represents the limits for 

an individual value.  For right now, it suffices to have an intuitive idea of what the confidence 

limits represent and graphically what they look like.  So for an ADVERT value of 1200 (input), 

one can visually see that the limits are approximately 1500 and 2900.  (The values are actually 

1511 and 2909.)  Hence, when advertising is $1,200 for a time period (ADVERTt = 1,200) then 

we are 95 percent confident that sales volume (SALESt) will be between approximately 1,500 and 

2,900. 

 

 

 

 

                                                 
12 Figure 3 was obtained by selecting Plot of Fitted Line under the Graphs icon. 
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The Concept of Stock Beta 

 
An important application of simple linear regression, from business, is used to calculate the β of 

a stock.  Investing in the stock market carries risks: systematic risk and specific risk. The stock 

β’s are a measure of systematic risk13, i.e., the variation in stock price explained the variation in 

the market price. Generally, the average stock moves up and down with the general market as 

measured by some accepted index such as the Standard & Poor’s 500 index (S&P 500) or the 

New York Stock Exchange (NYSE) Index.  The model used (specified) to calculate a stock ß is: 

Rj,t = α + β Rm,t + εt 
 
Where:  Rj,t  is the rate of return for the jth stock in time period t 
  Rm,t is the market rate of return in time period t 
  εt is the error term in time period t 
  α  is the intercept in simple linear regression 
  β  is the slope in simple linear regression and is the parameter of interest, the  
   stock beta. 
 

A formula for R j,t  (the rate of return for the jth stock in time period t) follows:  

   R j,t  =  (Pt  -  P t-1) / P t-1,       
 
where P is the price of the stock, Pt is the price at time t, Pt-1 is the price one time period prior to 

time t. So if Pt  is today’s closing stock price, Pt-1 is yesterday’s closing price. 

By definition, a stock has a beta of one (1.0) means as the market moves up or down by one 

percentage point, stock will also tend to move up or down by one percentage point.  A portfolio 

of these stocks will also move up or down with the broad market averages. If a stock has a beta 

of 0.5, the stock is considered to be one-half as volatile as the market.  It is one-half as risky as a 

                                                 
13 Another type of investment risk is specific risk, variation in stock price due to other factors such as the firm’s 
expected future earnings, acquisition strategies, etc. 
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portfolio with a beta of one.  Likewise, a stock with a beta of two (2.0) is considered to be twice 

as volatile as an average stock.  Such a portfolio will be twice as risky as an average portfolio. 

The β’s are used by portfolio managers when selecting stocks and are calculated and published 

by Value Line and numerous other organizations.  The beta (β) coefficients shown in the table 

below were calculated using data available at http://finance.yahoo.com, for a time period from 

June 2000 to June 2008.  Most stocks have beta in the range of 0.5 to 2.73, with the average for 

all stocks being a beta of 1.0.  Which stock is the most stable?  Which stock is the most risky?  Is 

it possible for a stock to have a negative beta (consider gold stocks)?  If so, what industry might 

it represent? 

Stock Beta 
   Amazon.com 2.73 
   Ebay.com 2.00 
   Dow Chemical 0.86 
   General Electric 0.84 
   Intel 2.17 
   Exxon 0.58 
   Citigroup 1.42 
   Microsoft 1.31 

 
In summary, the regression coefficient, β (the beta coefficient), is a market sensitivity index; it 

measures the relative volatility of a given stock versus the average stock, or “the market.”  The 

tendency of an individual stock to move with the market constitutes a risk because the stock 

market does fluctuate daily.   Even well diversified portfolios are exposed to market risk. 

 

 [Note: If the concept of stock risk is of special interest, please refer to any intermediate financial 

management text for a more in-depth explanation.  The concept is critically important to 

financial management.] 
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To illustrate the above model, we will use data from http://finance.yahoo.com.  In particular, we 

will calculate β’s for Anheuser Busch Corporation, the Boeing Corporation, and American 

Express using the S&P500 as the “market” portfolio.  Download the monthly values (adjusted 

close price which includes the dividends) of the individual stock at finance.yahoo.com and 

compute the monthly rate of returns (starting with June 2000). The prices need to be sorted first 

in ascending order by date. The data file stockbeta.xls contains the adjusted close monthly price 

(and the returns) from June 1, 2000 to May 31, 2008. 

For all three stocks, the model being specified and estimated follows the form stated in the 

equation shown above, the individual stocks rate of returns will be used as the dependent 

variable and the S&P500 rate of returns will be used as the independent variable. 

 

1. Anheuser Busch Co.  (BUD)14 

Using the equation, the model we specify is return_BUDt = α + β return_SP500t + εt.  

 
The estimation results from StatGraphics are shown below in Table 3: 

Simple Regression - return_BUD vs. return_SP500 
Dependent variable: return_BUD 
Independent variable: return_SP500 
Linear model: Y = a + b*X 
 
Coefficients 
 Least Squares Standard T  
Parameter Estimate Error Statistic P-Value 
Intercept 0.00722621 0.00471445 1.53278 0.1287 
Slope 0.110051 0.12157 0.905249 0.3677 
 
Analysis of Variance 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Model 0.00173015 1 0.00173015 0.82 0.3677 
Residual 0.19635 93 0.00211129   
Total (Corr.) 0.19808 94    
 
Correlation Coefficient = 0.0934591 
                                                 
14 At the time of writing the text, Anheuser-Busch Cos Inc. was in the process of being taken over by InBev in a 
$52 billion deal. 
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R-squared = 0.873461 percent 
R-squared (adjusted for d.f.) = -0.192416 percent 
Standard Error of Est. = 0.0459487 
Mean absolute error = 0.0349276 
Durbin-Watson statistic = 2.076 (P=0.6420) 
Lag 1 residual autocorrelation = -0.122298 

  
Table 3 

 

As shown in the estimation results, the estimated β for Anheuser Busch Co. is 0.11.  Note that 

with a p-value of 0.3677, the coefficient of determination, R-squared, is only 0.873 percent, 

which indicates a poor fit of the data.  However, at this point we only wish to focus on the 

estimated β. 

 
2. The Boeing Co. (BA) 
 
The model we specify, using equation (1) is return_BAt = α + β  return_SP500t + εt 

The results from StatGraphics appear below in Table 4. 

Simple Regression - return_BA vs. return_SP500 
Dependent variable: return_BA 
Independent variable: return_SP500 
Linear model: Y = a + b*X 
 
Coefficients 
 Least Squares Standard T  
Parameter Estimate Error Statistic P-Value 
Intercept 0.0119202 0.0079769 1.49434 0.1385 
Slope 0.829539 0.205698 4.0328 0.0001 
 
Analysis of Variance 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Model 0.0983031 1 0.0983031 16.26 0.0001 
Residual 0.56213 93 0.00604441   
Total (Corr.) 0.660433 94    
 
Correlation Coefficient = 0.385806 
R-squared = 14.8846 percent 
R-squared (adjusted for d.f.) = 13.9694 percent 
Standard Error of Est. = 0.0777458 
Mean absolute error = 0.0585097 
Durbin-Watson statistic = 1.95414 (P=0.4085) 
Lag 1 residual autocorrelation = -0.00398358 
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Table 4 

 

Note that the estimated β for The Boeing Co. is 0.83 while the R2 value is 14.88 percent. 

3. American Express (AXP) 

The model we specify, using the equation is as follows:  

return_AXPt = α + β  return_SP500t + εt 

which can be estimated using StatGraphics 

                                                       
The results from StatGraphics appear in Table 5: 
 
Simple Regression - return_AXP vs. return_SP500 
Dependent variable: return_AXP 
Independent variable: return_SP500 
Linear model: Y = a + b*X 
 
Coefficients 
 Least Squares Standard T  
Parameter Estimate Error Statistic P-Value 
Intercept 0.00254476 0.00450917 0.564351 0.5739 
Slope 1.17057 0.116277 10.0671 0.0000 
 
Analysis of Variance 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Model 0.195745 1 0.195745 101.35 0.0000 
Residual 0.179623 93 0.00193143   
Total (Corr.) 0.375368 94    
 
Correlation Coefficient = 0.722133 
R-squared = 52.1475 percent 
R-squared (adjusted for d.f.) = 51.633 percent 
Standard Error of Est. = 0.043948 
Mean absolute error = 0.0319201 
Durbin-Watson statistic = 2.10503 (P=0.6935) 
Lag 1 residual autocorrelation = -0.0904418 
 
 

 
Table 5 

 
 
The estimation results indicate that the β is 1.17, with an R-squared value of 52.15 percent. 
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Summary 

Using monthly values from June 2000 to May 2008, we utilized simple linear regression to 

estimate the β‘s of Anheuser Busch Co. (0.11), the Boeing Co. (0.83), and American Express 

(1.17).  Note that the closer the β‘s are to 1.0, the closer the stocks move with the market.  What 

does that imply about Anheuser Busch Corporation, the Boeing Corporation, and American 

Express? 

The risk contribution to a portfolio of an individual stock is measured by the stock’s beta 

coefficient.  Analysts review the market outlooks - if the outlook suggests a market decline, 

stocks with large positive coefficients might be sold short.  Of course, the historical measure of β 

must persist at approximately the same level during the forecast period.   

 

Assignment: Stock Beta 
 
You are to estimate the β's for any three stocks (your choice) using the market model (see below), 
with the S&P 500 index (^GSPC) as the measure for the market. For your analysis, use monthly 
data going back at least five years. 
 
You are to turn in 
1. A summary of the estimated β's, along with your estimation results  
2. A copy of the data and monthly rates of returns for each of the 3 stocks and the S&P 500 index  

MARKET MODEL  

The model used to calculate a stock β is: Rj,t = β0 + β1 Rm,t + ε t, where Rj,t is the rate of return for 
the jth stock in time period t, Rm,t is the market rate of return in time period t, ε t is the error term in 
time period t, β0 and β1 are constants. 
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Multiple Linear Regression 

Referring back to the Pinkham data, suppose you decided that ADVERTt contained 

information about SALESt that lagged value of SALESt (i.e. SALESt-1) did not, and vice versa, 

and that you wished to regress SALESt on both ADVERTt and SALESt-1; the solution would be 

to use a multiple regression model.  Hence, we need to generalize our discussion of simple 

linear regression models by now allowing for more than one explanatory (independent) 

variable, hence the name multiple regression.  [Note:  more than one independent 

(explanatory) variable, hence we are not limited to just two independent (explanatory) 

variables.] 

Specification: Going back to our example, if we specify a multiple linear regression model 

where SALESt is again the dependent variable and ADVERTt and SALESt-1 are the explanatory 

variables, then the model is: 

SALESt = B0 + B1 ADVERTt + B2 SALESt-1 + ERRORt 

 where:  B0, B1, and B2 are parameters (coefficients). 

Estimation:  To obtain estimates for B0, B1, and B2 via StatGraphics, the criterion of least 

squares still applies, the mathematics employed involves using matrix algebra.  It suffices for 

the student to understand what the computer is doing on an intuitive level; i.e. the best fitting 

line is being generated.  The StatGraphics commands for fitting a multiple regression are: 

Relate -> Multiple Factors -> Multiple Regression ... Then enter the dependent and 

independent variables. To lagged value (one lag) of SALESt, or  

SALESt-1 ,is expressed as lag(SALES, 1) in StatGraphics. So enter lag(sales,1) in the 

independent variables box in StatGraphics. The results from the estimation phase are shown 

in Table 6. 
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Table 6 

Diagnostic Checking 

We still utilize the diagnostic checks we discussed for simple linear regression.  We are now 

going to expand that list and include additional diagnostic checks, some require more than 

one explanatory variable but most also pertain to simple linear regression.  We waited to 

introduce some of the checks [that also pertain to simple linear regression] because we didn’t 

want to introduce too much at one time and most of the corrective measures involve 

knowledge of multiple regression as an alternative model. 

The first diagnostic we consider involves focusing on whether any of the explanatory 

variables should be removed from the model.  To make these decision(s) we test whether the 

coefficient associated with each variable is significantly different from zero, i.e. for the ith 

explanatory variable: 

 

Multiple Regression Analysis
-----------------------------------------------------------------------------
Dependent variable: sales
-----------------------------------------------------------------------------
                                      Standard          T

Parameter               Estimate         Error       Statistic        P-Value
-----------------------------------------------------------------------------
CONSTANT                 138.691        95.6602        1.44982         0.1534
lag(sales,1)            0.759307      0.0914561        8.30242         0.0000
advert                  0.328762       0.155672        2.11189         0.0397
-----------------------------------------------------------------------------

                          Analysis of Variance
-----------------------------------------------------------------------------
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value
-----------------------------------------------------------------------------
Model                   1.80175E7      2    9.00875E6     178.23       0.0000
Residual                2.52722E6     50      50544.3
-----------------------------------------------------------------------------
Total (Corr.)           2.05447E7     52

R-squared = 87.699 percent
R-squared (adjusted for d.f.) = 87.2069 percent
Standard Error of Est. = 224.821
Mean absolute error = 173.307
Durbin-Watson statistic = 0.916542
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H0: βi = 0 

H1: βi ≠ 0 

As discussed in simple linear regression this involves a t-test.  Looking at Table 6, the p-

value for the tests associated with determining the significance for SALESt-1 and ADVERT1 

are 0.0000 and 0.0397, respectively, we can ascertain that neither explanatory variable should 

be eliminated from the model.  If one of the explanatory variables had a p-value greater than 

α =. 05, then we would designate that variable as a candidate for deletion from the model and 

go back to the specification phase. 

Another attribute of the model we are interested in is the R2 adjusted value that in Table 6 is 

0.8721, or 87.21 percent.  Since we are now considering multiple linear regression models, 

the R2 value that we calculate represents the amount of variation in the dependent variable 

(SALESt) that is explained by the fitted model, which includes all of the explanatory 

variables jointly (ADVERTt and SALESt-1).  At this point we choose to ignore the adjusted 

(ADJ) factor included in the printout. 

Since we have already asked the question if anything should be deleted from the model the 

next question that should be asked if there is anything that is missing from the model, i.e. 

should we add anything to the model.  To answer this question we should use theory but from 

an empirical perspective we look at the residuals to see if they have a pattern, which as we 

discussed previously would imply there is information.  If we find missing information for 

the model (i.e. a pattern in the residuals), then we go back to the specification phase, 

incorporate that information into the model and then cycle through the 3 phase process again, 

with the revised model.  We will illustrate this in greater detail in our next example.  
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However, the process involved is very similar to that which we employed earlier in the 

semester.  We illustrate the residual analysis with a new example. 

 

Example 

The purpose behind looking at this example is to allow us to work with some cross sectional 

data and also to look in greater detail at analyzing the residuals.  The data set contains three 

variables that have been recorded by a firm that presents seminars.  Each record focuses on a 

seminar with the fields representing: 

• number of people enrolled (ENROLL) 

• number of mailings sent out (MAIL) 

• lead time (in weeks) of 1st mailing (LEAD) 

The theory being suggested is that the variation in the number of enrollments is an 

approximate linear function of the number of mailings and the lead-time.  As recommended 

earlier, we look at the scatter plots of the data to see if our assumptions seem valid.  Since we 

are working with two explanatory variables, a three dimensional plot would be required to 

see all three variables simultaneously, which can be done in StatGraphics with the 

PLOTTING FUNCTIONS, X-Y-Z LINE and SCATTER PLOT  options (note the 

dependent variable is usually Z).  See Figure 7 for this plot. 
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Figure 7.    Plot of Enroll vs. Mail & Lead 

 
This plot provides some insight, but for beginners, it is usually more beneficial to view 

multiple two-dimensional plots where the dependent variable ENROLL is plotted against the 

different explanatory variables, as is shown in Figures 8 and 9. 

 

 

 
 
 
 
 
 

            
                                              Figure 8.   Plot of Enroll vs. Mail 

 
 
 
 
 

 
             

 
 
 
 
 
 

Figure 9.   Plot of Enroll vs. Lead 
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Looking at Figure 9, which plots ENROLL against LEAD, we notice that there is a dip for the 

largest LEAD values which may economically suggest diminishing returns i.e. at a point the 

larger lead time is counterproductive.  This suggest that ENROLL and LEAD may have a 

parabolic relationship.  Since the general equation of a parabola is: 

y = ax2 + bx + c 

we may want to consider including a squared term of  LEAD in the model.  However, at this 

point we are not going to do so, with the strategy that if it is needed, we will see that when 

we examine the residuals, as we would have ignored some information in the data and it will 

surface when we analyze the residuals.  (In other words we wish to show that if a term should 

be included in a model, but is not identified, one should be able to identify it as missing when 

examining the residuals of a model estimated without it.) 

 

Specification   

Thus the model we tentatively specify is: 

ENROLLi = B0 + B1 MAILi + B2 Leadi + ERRORi 
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Estimation       

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

Table 7 

Note that MAIL and LEAD are both significant, since their p-values are 0.0000 and 0.0008, 

respectively.  Hence, there is no need at this time to eliminate either from the model.  Also, 

note that R2
adj  is 79.96 percent.   

To see if there is anything that should be added to the model, we analyze the residuals to see 

if they contain any information.  Utilizing the graphics options icon, one can obtain a plot of 

the standardized residuals versus lead (select residuals versus X).  Plotting against the 

predicted values is similar to looking for departures from the fitted line.  For our example 

Multiple Regression Analysis
-----------------------------------------------------------------------------
Dependent variable: enroll
-----------------------------------------------------------------------------
                                       Standard          T
Parameter               Estimate         Error       Statistic        P-Value
-----------------------------------------------------------------------------
CONSTANT                 14.8523         2.1596        6.87733         0.0000
lead                    0.627318       0.165436        3.79191         0.0008
mail                     1.27378       0.233677        5.45103         0.0000
-----------------------------------------------------------------------------

                           Analysis of Variance
-----------------------------------------------------------------------------
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value
-----------------------------------------------------------------------------
Model                     1985.35      2      992.674      56.87       0.0000
Residual                  453.824     26      17.4548
-----------------------------------------------------------------------------
Total (Corr.)             2439.17     28

R-squared = 81.3943 percent
R-squared (adjusted for d.f.) = 79.9631 percent
Standard Error of Est. = 4.17789
Mean absolute error = 3.33578
Durbin-Watson statistic = 1.03162
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since we entertained the idea of some curvature (parabola) when plotting ENROLL against 

LEAD, we now plot the residuals against LEAD.  This plot is shown as Figure 10. 

 
 
 
 
 
 
 

            
  

 
 
 
 
 
 

Figure 10.   Residual Plot for Enroll against Lead 
 
 
What we are looking for in the plot is whether there is any information in LEAD that is 

missing from the fitted model.  If one sees the curvature that still exists, then it suggests that 

one needs to add another variable, actually a transformation of LEAD, to the model.  Hence 

we go back to the specification phase, based upon the information just discovered, and 

specify the model as: 

ENROLLi = B0 + B1 MAILi + B2 Lead + B3 (LEAD)2
i + ERRORi 

The estimation of the revised model generates the output presented in Table 8. 
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Table 8 
 
                                                                            
Diagnostic Checking   

At this point we go through the diagnostic checking phase again.  Note that all three 

explanatory variables are significant and that the R2
adj value has increased to 91.13 percent 

from 79.96 percent.  For our purposes at this point, we are going to stop our discussion of 

this example, although the reader should be aware that the diagnostic checking phase has not 

Multiple Regression Analysis
-----------------------------------------------------------------------------
Dependent variable: enroll
-----------------------------------------------------------------------------
                                       Standard          T
Parameter               Estimate         Error       Statistic        P-Value
-----------------------------------------------------------------------------
CONSTANT                0.226184        2.89795      0.0780495         0.9384
lead                     4.50131       0.675669        6.66201         0.0000
mail                    0.645073       0.189375        3.40633         0.0022
lead * lead            -0.132796       0.022852       -5.81115         0.0000
-----------------------------------------------------------------------------

                           Analysis of Variance
-----------------------------------------------------------------------------
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value
-----------------------------------------------------------------------------
Model                     2246.12      3      748.707      96.96       0.0000
Residual                  193.053     25      7.72211
-----------------------------------------------------------------------------
Total (Corr.)             2439.17     28

R-squared = 92.0853 percent
R-squared (adjusted for d.f.) = 91.1356 percent
Standard Error of Est. = 2.77887
Mean absolute error = 2.081
Durbin-Watson statistic = 1.121
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been completed.  Residual plots should be examined again, and other diagnostic checks we 

still need to discuss should be considered. 

Before we proceed however, it should be pointed out that the last model is still a multiple 

linear regression model.  Many students think that by including the squared term, to 

incorporate the curvature, that we may have violated the linearity condition.  This is not the 

case, as when we say “linear” it is linear with regards to the coefficients.  An intuitive 

explanation of this is to think like the computer, all LEAD2 represents is the squared values of 

LEAD, therefore, the calculations are the same as if LEAD2 was another explanatory variable. 

The next three multiple regression topics we discuss will be illustrated with the data that was 

part of a survey conducted of houses in a coastal town in California.  The variables measured 

(recorded), for each house, are sales price (price, in $10,000), square feet (sqft, in 100 square 

feet), number of bedrooms (bed), number of bathrooms (bath), total number of rooms (total), 

age in years (age), whether the house has an attached garage (attach), and whether the house 

has a nice view (view). 

Dummy Variables 
 
Prior to this current example, all the regression variables we have considered have been 

either ratio or interval data, which means they are non-qualitative variables.  However, we 

now want to incorporate qualitative variables into our analysis.  To do this we create dummy 

variables, which are binary variables that take on values of either zero or one.  Hence, the 

dummy variable (attach) is defined as: 

   attach =  1 if garage is attached to house 
        0 otherwise (i.e. not attached)  

and 
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   view =  1 if  house has a nice view 
       0 otherwise 
 
Note that each qualitative attribute (attached garage and view) cited above has two possible 

outcomes (yes or no) but there is only 1 dummy variable for each.  That is because there 

must always be, at maximum, one less dummy variable than there are possible outcomes 

for the particular qualitative attribute.  We mention this because there are going to be 

situations, for other examples, where one wants to incorporate a qualitative attribute that has 

more than two possible outcomes in the analysis.  For example, if one is explaining sales and 

has quarterly data, they might want to include the season as an explanatory variable.  Since 

there are four seasons (Fall, Winter, Spring, and Summer) there will be three (four minus one) 

dummy variables.  To define these three dummy variables, we arbitrarily select one season to 

“withhold” and create dummy variables for each of the other seasons.  This withheld season 

is called the reference season (reference class).  For example, if summer was “withheld” then 

our three dummy variables could be 

    Fall     =   1   if Fall 
          0   otherwise 
 
    Winter =  1   if Winter 
            0   otherwise 
 
    Spring  = 1   if Spring 
           0   otherwise 

Now, what happens when we withhold a season is not that we ignore the season, but the 

others are being compared with what is being withheld.  As we will show in class, the b’s 

(coefficient estimates) for the dummy variables (Fall, Winter, Spring) represents the 

difference in sales between these seasons (Fall, Winter, Spring) and the summer season (the 

season being withheld here).  This summer season is the reference season (reference class).  
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The following data sheet shows the 1’s and 0’s after we add the three dummy variables Fall, 

Winter, and Spring as defined above in the sales data. We will analyze this data set in class. 

Year  Quarter  Sales  Advertising Fall  Winter  Spring  Summer 
1988  Fall        42568  1550  1  0  0  0 
1989  Winter     34369  1119  0  1  0  0 
1989  Spring      59205  2585  0  0  1  0 
1989  Summer    42251  1093  0  0  0  1 
1989  Fall        70340  2879  1  0  0  0 
1990  Winter     53020  1885  0  1  0  0 
1990  Spring      58295  2544  0  0  1  0 
1990  Summer    48706  1618  0  0  0  1 
1990  Fall        60890  2332  1  0  0  0 
1991  Winter     41622  1223  0  1  0  0 
1991  Spring      65906  2731  0  0  1  0 
1991  Summer    48714  2227  0  0  0  1 
1991  Fall        61795  2021  1  0  0  0 
1992  Winter     47294  2272  0  1  0  0 
1992  Spring      61316  2519  0  0  1  0 
1992  Summer    45947  1774  0  0  0  1 
1992  Fall        59689  2261  1  0  0  0 
1993  Winter     57965  2921  0  1  0  0 
1993  Spring      59224  2194  0  0  1  0 
1993  Summer    68026  2905  0  0  0  1 
1993  Fall        54224  2059  1  0  0  0 
1994  Winter     41272  1762  0  1  0  0 
1994  Spring      58429  2319  0  0  1  0 
1994  Summer    49159  1674  0  0  0  1 
1994  Fall        50832  1629  1  0  0  0 
1995  Winter     43373  2295  0  1  0  0 
1995  Spring      59686  2360  0  0  1  0 
1995  Summer    41567  1614  0  0  0  1 
1995  Fall        43156  1546  1  0  0  0 
1996  Winter     19402  1086  0  1  0  0 
1996  Spring     55340  2190  0  0  1  0 
1996  Summer    38887  1530  0  0  0  1 
1996  Fall        50302  1399  1  0  0  0 
1997  Winter     48328  2020  0  1  0  0 
1997  Spring      68104  2951  0  0  1  0 
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1997  Summer    39205  1117  0  0  0  1 
1997  Fall        44561  1735  1  0  0  0 
1998  Winter     39859  1291  0  1  0  0 
1998  Spring      41542  1665  0  0  1  0 
1998  Summer    40481  1306  0  0  0  1 
1998  Fall        52171  1210  1  0  0  0 
1999  Winter     40111  1432  0  1  0  0 
1999  Spring      39215  1036  0  0  1  0 
1999  Summer    34174  896  0  0  0  1 
1999  Fall        53176  1400  1  0  0  0 
2000  Winter     40134  1100  0  1  0  0 
2000  Spring      39535  1222  0  0  1  0 
2000  Summer    35021  932  0  0  0  1 
2000  Fall        54321  1222  1  0  0  0 
2001  Winter     35264  950  0  1  0  0 
2001  Spring      43250  950  0  0  1  0 
2001  Summer    36231  950  0  0  0  1 
2001  Fall        55212  1000  1  0  0  0 
2002  Winter     36234  900  0  1  0  0 
2002  Spring      44212  900  0  0  1  0 
2002  Summer    35000  950  0  0  0  1 
2002  Fall        56210  1200  1  0  0  0 

 

Outliers 

When an observation has an undue amount of influence on the fitted regression model 

(coefficients) then it is called an outlier.  Ideally, each observation has an equal amount of 

influence on the estimation of the fitted lines.  When we have an outlier, the first question 

one needs to ask is “Why is that observation an outlier?”  The answer to that question will 

frequently dictate what type of action the model builder should take. 

One reason an observation may be an outlier is because of a recording (inputting) error.  For 

instance, it is easy to mistakenly input an extra zero, transpose two digits, etc.  When this is 

the cause, then corrective action can clearly be taken.  Don’t always assume the data is 
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correct! Another source is because of some extra ordinary event that we do not expect to 

occur again.  Or the observation is not part of the population we wish to make 

interpretation/forecasts about.  In these cases, the observation may be “discarded.”   

If the data is cross-sectional, then the observation may be eliminated, thereby decreasing the 

number of observations by one.  If the data is times series, by “discarding the impact” of the 

observation one does not eliminate observations since doing so may affect lagging 

relationships, however one can set the dummy variable equal to one (1) for that observation, 

zero (0) otherwise. 

At other times, the outcome, which is classified as an outlier, is recorded correctly, may very 

well occur again, and is indeed part of the concerned population.  In this case, one would 

probably want to leave the observation in the model construction process.  In fact, if an 

outlier or set of outliers represents a source of specific variation then one should incorporate 

that specific variation into the model via an additional variable.  Keep in mind, just because 

an observation is an outlier does not mean that it should be discarded.  These observations 

contain information that should not be ignored just so “the model looks better.” 

Now that we have defined what an outlier is and what action to take/not take for outlier, the 

next step is to discuss how to determine what observations are outliers.  Although a number 

of criteria exist for classifying outliers, we limit our discussion to two specific criteria - 

standardized residuals and leverage. 

The theory behind using standardized residuals is that outliers are equated with observations 

which have large residuals.  To determine what is large, we standardize the residuals and 

then use the rule that any standardized residual outside the bounds of -2 to 2 is considered an 

outlier.  [Why do we use -2 and 2?  Could we use -3 and 3?]  
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The theory behind the leverage criteria is that a large residual may not necessarily equate 

with an outlier.  Hence, the leverage value measures the amount of influence that each 

observation has on the set of estimates.  It’s not intuitive, but can be shown mathematically, 

that the sum of the leverage points is equal to the number of B (or β ) coefficients in the 

model (P).  Since there are N observations, under ideal conditions each observation should 

have a leverage value of P/N.  Hence, using our criteria of large being outside two standard 

deviation, the decision rule for declaring outliers by means of leverage values is to declare an 

observation as a potential outlier if its leverage value exceeds 2*P/N.  StatGraphics employs a 

cut off of 3* P/N. 

To illustrate, identifying outliers, we estimate the model: 

Pricei = B0 + B1 SQFTi + B2 BED + Error 

 

 

 

 

 

 

 

 

 

 

 

Table 9 

Multiple Regression Analysis
-----------------------------------------------------------------------------
Dependent variable: price
-----------------------------------------------------------------------------
                                       Standard          T
Parameter               Estimate         Error       Statistic        P-Value
-----------------------------------------------------------------------------
CONSTANT                -15.4038        7.34394       -2.09749         0.0414
sqft                     3.52674       0.269104        13.1055         0.0000
bed                      7.64828        2.78697         2.7443         0.0086
-----------------------------------------------------------------------------

                           Analysis of Variance
-----------------------------------------------------------------------------
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value
-----------------------------------------------------------------------------
Model                     29438.5      2      14719.3     140.65       0.0000
Residual                  4918.52     47      104.649
-----------------------------------------------------------------------------
Total (Corr.)             34357.0     49

R-squared = 85.6841 percent
R-squared (adjusted for d.f.) = 85.0749 percent
Standard Error of Est. = 10.2298
Mean absolute error = 7.19612
Durbin-Watson statistic = 1.682
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With the results being shown in Table 9, in our data set of houses, clearly some houses are 

going to influence the estimate more than others.  Those with undue influences will be 

classified as potential outliers.  Again, the standardized residuals outside the bounds -2, +2 

(i.e. absolute value greater than 2), and the leverage values greater than 3 3/50 (P = 3 since 

we estimated the coefficient for two (2) explanatory variables and the intercept and n = 50 

since there were 50 observations) will be flagged.  After estimating the model we select the 

"unusual residuals" and "influential points"  options under the Tables options icon. Note that 

from tables 10 and 11 observations  8, 42, 44, 47, 49 and 50 are classified as outliers. 

 

 

 

 

 

 

Table 10 

 
 
 
 
 
 
 
 
 
 
 
 
 

                        Unusual Residuals
------------------------------------------------
                         Predicted              
Row                Y             Y      Residual
------------------------------------------------
    44         111.3        85.482        25.818
    47         115.2       92.1828       23.0172
    49         129.0       89.2508       39.7492
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Table 11 

Once the outliers are identified one then needs to decide what, if anything, needs to be 

modified in the data or model.  This involves checking the accuracy of the data and/or 

determining if the outliers represent a specific source of variation.  To ascertain any sources 

of specific variation one looks to see if there is anything common in the set, or subset, of 

observations flagged as outliers.  In Table 10 1

15  one can see that some of the latter 

observations (42, 44, 47, 49, and 50) were flagged.  Since the data (n = 50) was entered by 

ascending price, one can see that the higher priced homes were flagged.  As a result, for this 

example, the higher priced homes are receiving a large amount of influence.  Hence, since 

this is cross-sectional data, one might want to split the analysis into two models - one for 

“lower” priced homes and the second for “higher” priced homes. 

 

 

                                                 
15  StatGraphics also used two other techniques for identifying outliers (Mahalanobis 
Distribution and DIFTS), which we have elected not to discuss since from an intuitive level 
they are similar to the standardized residual/leverage criteria. 
 

               Influential Points
------------------------------------------------
                       Mahalanobis
Row         Leverage      Distance         DFITS
------------------------------------------------
     8     0.0816156       3.28611      0.560007
    42      0.144802       7.14775       0.58652
    49     0.0947427       4.04401       1.62728
    50      0.339383       23.6798     0.0932134
------------------------------------------------
Average leverage of single data point = 0.06
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Multicollinearity 

When selecting a set of explanatory variables for a model, one ideally would like each 

explanatory variable to provide unique information that is not provided by the other 

explanatory variable(s).  When explanatory variables provide duplicate information about the 

dependent variable, then we encounter a situation called multicollinearity.  For example, 

consider our house data again, where the following model is proposed: 

Price = B0 + B1 SQFT + B2 BATH + B3 TOTAL + ERROR 

Clearly there is a relationship among the three (3) explanatory variables.  What problems 

might this create?  To answer this, consider the estimation results, which are shown below. 

 

 

 

 

 

 

 

 

 

 

 

Table 13 

If one were to start interpreting the coefficients individually and noticed that bath has a 

negative coefficient, they might come to the conclusion that one way to increase the sales 

Multiple Regression Analysis
-----------------------------------------------------------------------------
Dependent variable: price
-----------------------------------------------------------------------------
                                       Standard          T
Parameter               Estimate         Error       Statistic        P-Value
-----------------------------------------------------------------------------
CONSTANT                -42.6274        9.50374       -4.48533         0.0000
sqft                     3.02471       0.296349        10.2066         0.0000
bath                    -10.0432        3.49189       -2.87614         0.0061
total                    10.7836        2.06048        5.23351         0.0000
-----------------------------------------------------------------------------

                           Analysis of Variance
-----------------------------------------------------------------------------
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value
-----------------------------------------------------------------------------
Model                     30780.2      3      10260.1     131.95       0.0000
Residual                  3576.84     46      77.7575
-----------------------------------------------------------------------------
Total (Corr.)             34357.0     49

R-squared = 89.5892 percent
R-squared (adjusted for d.f.) = 88.9102 percent
Standard Error of Est. = 8.81802
Mean absolute error = 5.89115
Durbin-Watson statistic = 1.53269
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price is to eliminate a bathroom.  Of course, this doesn’t make sense, but it does not mean the 

model is not useful.  After all, when the BATH is altered so are the TOTAL and SQFT.  So a 

problem with multicollinearity is one of interpretation when other associated changes are not 

considered.  One important fact to remember, is that just because multicollinearity exists, 

does not mean the model can not be used for meaningful forecasting, provided the forecasts 

are within the data region considered for constructing the model. 
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Predicting Values with Multiple Regression 
 
Regression models are frequently used for making statistical predictions.  A multiple 

regression model is developed, by the method of least squares, to predict the values of a 

dependent, response variable based on two or more independent, explanatory variables. 

Research data can be classified as cross-sectional data or as time series data. Cross-sectional 

data has no time dimension, or it is ignored.  Consider collecting data on a group of subjects.  

You are interested in their age, weight, height, gender, and whether they tend to be left-

handed.  The time dimension in collecting the data is not important and would probably be 

ignored; even though researchers tend to collect the data within a reasonably short time 

period. 

Time series data is a sequence of observations collected from a process with equally spaced 

periods of time.  For example, in collecting sales data, the data would be collected weekly 

with the time (the specific week of the year) and sales being recorded in pairs. 

Using Cross-sectional Data for Predictions 

When using regression models for making predictions with cross-sectional data, it is 

imperative that you use only the relevant range of the predictor variable(s).  When predicting 

the value of the response variable for a given value of the explanatory variable, one may 

interpolate within the range of the explanatory variables.  However, contrary to when using 

time series data, one may not extrapolate beyond the range of the explanatory variables.  

(To predict beyond the range of an explanatory variable is to assume that the relationship 

continues to hold true below and/or above the range -- something that is not known nor can it 
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be determined.  To make such an interpretation is meaningless and, at best, subject to gross 

error.) 

An Example: Using a Regression Model to Predict  

Consider the following research problem - a real estate firm is interested in developing a 

model to predict, or forecast, the selling price of a home in a local community.  Data was 

collected on 50 homes in a local community over a three week period. 

The data can consist of both qualitative and quantitative values. Quantitative variables are 

measurable whereas qualitative variables are descriptive.  For example: your height, a 

quantitative value, is measurable whereas the color of your hair, a qualitative variable, is 

descriptive. 

 For our real estate example, the dependent variable (selling price) and the explanatory 

variables (square feet, number of bathrooms, and total number of rooms) are all quantitative 

variables.  None of the data are qualitative variables. 

Table 13.  Variable With Range of Values 

                     
                              Variables 

 
Range of Values 

                       Price (selling)  ($1000)              30.6 - 165 
                       Square feet      (100 ft2)                   8 - 40 
                       Number of Bathrooms                   1 - 3 
                       Total number of rooms                   5 - 12 

    
 
As a review, the multiple regression model can be expressed as: 
 

Yi = β0 + β1X1 + β2X2 + β3X3 + εi 
 
The slope, βi, known as a net regression coefficient,  represents the unit change in Y per 

unit change in Xi taking into account (or, holding constant) the effect of the remaining 

explanatory variables.  In our real estate problem, b1, where X1 is in square feet, represents 
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the unit change selling price per unit change in square feet, taking into account the effect of 

number of bedrooms, and total number of rooms. 

The resulting model fitting equation is shown in Table 14.  

                            

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 14 
 

Multiple regression analysis is conducted to determine whether the null hypothesis, written 

as Ho: βi = 0  (with i = 0 - 3), can be rejected. If the null hypothesis can be rejected, then 

there is sufficient evidence of a relationship (or, an association) between the response 

variable and the explanatory variables in the sample.  Table 14 also displays the resulting 

Multiple Regression Analysis
-----------------------------------------------------------------------------
Dependent variable: price
-----------------------------------------------------------------------------
                                       Standard          T
Parameter               Estimate         Error       Statistic        P-Value
-----------------------------------------------------------------------------
CONSTANT                -42.6274        9.50374       -4.48533         0.0000
sqft                     3.02471       0.296349        10.2066         0.0000
bath                    -10.0432        3.49189       -2.87614         0.0061
total                    10.7836        2.06048        5.23351         0.0000
-----------------------------------------------------------------------------

                           Analysis of Variance
-----------------------------------------------------------------------------
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value
-----------------------------------------------------------------------------
Model                     30780.2      3      10260.1     131.95       0.0000
Residual                  3576.84     46      77.7575
-----------------------------------------------------------------------------
Total (Corr.)             34357.0     49

R-squared = 89.5892 percent
R-squared (adjusted for d.f.) = 88.9102 percent
Standard Error of Est. = 8.81802
Mean absolute error = 5.89115
Durbin-Watson statistic = 1.53269
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analysis of variance (ANOVA) for the multiple regression model using the explanatory 

variables listed in Table 12. 

 The ANOVA for the full multiple regression shows a p-value equal to 0.0000, thus Ho can be 

rejected (because the p-value is less than α of 0.05).  Since the null hypothesis may be 

rejected, there is sufficient evidence of a relationship (or, an association) between selling 

price and the three explanatory variables in the sample of 50 houses.  

CAUTION: As stated, when using regression models for making predictions 
with cross-sectional data, use only the relevant range of the explanatory 
variable(s). To predict outside the range of an explanatory variable is to 
assume that the relationship continues to hold true below and/or above the 
range -- something that is not known nor can be determined. To make such an 
interpretation is meaningless and, at best, subject to gross error. 
 

Suppose one wishes to obtain a point estimate, along with confidence intervals for both the 

individual forecasts and the mean, for a home with the following attributes 

1500 square feet,  1 bath,  6  total rooms. 

To do this using Statgraphics, alls one needs to do is add an additional row of data to the data 

file (HOUSE.SF).  In particular one would insert a 15 in the sqft column (remember that the 

square feet units is in 100 's), a 1 in  the bath column and a 6 in the total column.  We leave 

the other columns blank, especially the price column, since Statgraphics will treat it as a 

missing value and hence estimate it.  To see the desired output, one runs the regression, using 

the additional data points, goes to the Tables options icon and selects the "report" option.  

Table 15 shows the forecasting results for our example. 
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Table 15 

 

Summary 

In the introduction to this section, cross-sectional data and time series data were defined.  

With cross-sectional data, the time dimension in collecting the data is not important and can 

be ignored; even though researchers tend to collect the data within a reasonably short time 

period.  When predicting the value of the response variable for a given value of the 

explanatory variable with cross-sectional data, a researcher is restricted to interpolating 

within the range of the explanatory variables.  However, a researcher may not extrapolate 

beyond the range of the explanatory variables because it cannot be assumed that the 

relationship continues to hold true below and/or above the range since such an assumption 

cannot be validated.  Cross-sectional forecasting is stationary, it does not change over time. 

On the other hand, time series data is a sequence of observations collected from a process 

with equally spaced periods of time. Contrary to the restrictions placed on cross-sectional 

data, when using time series data a major purpose of forecasting is to extrapolate beyond the 

range of the explanatory variables.  Time series forecasting is dynamic, it does change over 

time. 

 

 

Regression Results for price
---------------------------------------------------------------------
                Fitted     Stnd. Error  Lower 95.0% CL  Upper 95.0% C
Row              Value    for Forecast    for Forecast    for Forecas
---------------------------------------------------------------------
    51         57.4014          9.1313          39.021         75.781
---------------------------------------------------------------------
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Stepwise  Regression 

When there exists a large number of potential explanatory variables, a good exploratory 

technique one can utilize is known as stepwise regression. This technique involves 

introducing or deleting variables one at a time.  There are two general procedures under the 

umbrella of stepwise regression --  forward selection  and  backwards elimination.  A hybrid 

of both forward selection and backwards elimination exists and is generally known as 

stepwise. 

In the sections below, we describe the three (3) procedures cited above.  In order to follow 

the discussion, we first need to review the t- test for regression coefficients.  Recall that for 

the model 

                      Yi   =   β0 +  β1 X1,i   +  β2 X2,i   + ......... + βk Xk,i   +  εt  

the  t-test for:    H0  :   βk = 0 
     H1 :   βk ≠ 0 

actually tests whether the variable Xk  should be included  in the model.  If one rejects H0, 

then the decision is to keep Xt  in the model, whereas if one does not reject H0   the decision 

is to eliminate Xt  from the model.  Since rejecting H0 is usually done when either t ≤  -2.0   

or   t ≥ 2.0, one can see that having a variable in the model is equated to having a  t-value 

with an absolute value greater than 2.  Likewise, if a variable has a corresponding  t-value, 

which is equal to or less than 2 in absolute terms, it should be eliminated from the model.   

To simplify the programming for the stepwise procedures, the  software packages generally 

rely on the fact that squaring a distribution gives one an F distribution.  Hence, the  

discussion above about the t value and whether to keep or eliminate the corresponding 

variable can be expressed as:  
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If the F-statistic ( F = t 2) is greater than  4.0 , then the corresponding  variable 
should be included in the model.  If the F-statistic is less than 4.0, then the 
corresponding variable should not be included in the model. 

 

Given this background information, we now discuss the three (3) stepwise procedures. 

Forward Selection 

This procedure starts with no explanatory variables in the model, only a constant.  It then 

calculates an F-statistic for each variable and focuses its attention on that variable with the 

highest F-value.  If the highest F-value is greater than 4.0, then the corresponding variable is 

inserted into the model.  If the highest F-value is less than 4.0, then the process stops.  

Assuming the first variable is inserted in the model, an F-statistic is then calculated for each 

of the variables not in the model, conditioned upon the fact that the first variable selected is 

in the model.  The procedure then focuses on the variable with the highest F-value and asks 

whether the F-value is greater than 4.0.  If the answer is yes, the associated variable is 

inserted into the model and the process continues by calculating an F- statistic for each of the 

variables not included in the model, conditioned upon the fact that the first two variables 

selected are included in the model.  Once again, the procedure focuses attention on that 

variable with the largest F-value and determines whether it is larger than 4.0.  If the answer is 

yes the associated variable is inserted into the model and the process continues by calculating 

an F-statistic for each of the variables not included in the model, conditioned upon the fact 

that the first three variables selected are included in the model.  This process continues on 

until finally either all of the variables have been included in the model or none of the 

remaining variables are significant. 
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Backward Elimination 

This procedure starts with all of the explanatory variables in the model and successively 

drops one variable at a time.  Given all of the explanatory variables in the model, the “full” 

regression is run and an F-statistic for each explanatory variable is calculated.  The attention 

now focuses on the variable with the smallest F-value.  If the F-value is less than 4.0, then 

that variable is eliminated from the model and a new regression model is estimated.  From 

this “smaller regression” F-statistics are examined and again the attention now focuses on 

that variable with the smallest F-value.  If the F- value is less than 4.0, then that variable is 

eliminated from the model and a new regression model is estimated.  This process continues 

on until either all of the explanatory variables have been eliminated from the model or all of 

the remaining explanatory variables are significant. 

Stepwise 

This procedure is a hybrid of forward selection and backwards elimination.  It operates the 

same as forward selection, except at each stage the possibility of deleting a variable, as in 

backward elimination is considered.  Hence, a variable that enters at one stage may be 

eliminated at a later stage (due to multicollinearity). The example below shows how to apply 

stepwise regression to select explanatory variables for the House data (house.sf6) where 

“price” is the dependent variable. First fit the multiple regression in StatGraphics by using all 

explanatory variables (Relate -> Multiple Factors -> Multiple Regression): 

Multiple Regression - price 
Dependent variable: price (in $10,000) 
Independent variables:  
     age 
     attach 
     bath 
     bed 
     sqft (in 100 square feet) 
     total 
     view 
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  Standard T  
Parameter Estimate Error Statistic P-Value 
CONSTANT -41.8296 10.1375 -4.12624 0.0002 
age -0.000135743 0.316936 -0.000428299 0.9997 
attach 1.77248 3.03997 0.583058 0.5630 
bath -8.74704 3.82042 -2.28955 0.0271 
bed 2.40104 2.90191 0.827401 0.4127 
sqft 2.9326 0.333478 8.79399 0.0000 
total 9.44877 2.56786 3.67963 0.0007 
view 2.55483 4.54402 0.56224 0.5769 
 
Analysis of Variance 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Model 30885.0 7 4412.14 53.37 0.0000 
Residual 3472.08 42 82.6686   
Total (Corr.) 34357.0 49    
 
R-squared = 89.8941 percent 
R-squared (adjusted for d.f.) = 88.2098 percent 
Standard Error of Est. = 9.09223 
Mean absolute error = 5.93481 
Durbin-Watson statistic = 1.6124 (P=0.0583) 
Lag 1 residual autocorrelation = 0.170479 
 

Then right-mouse click in the multiple regression pane and select “Analysis Option”. Check 

“Forward Selection” under “Fit”. Below is the resulting output: 

Multiple Regression - price 
Dependent variable: price (in $10,000) 
Independent variables:  
     age 
     attach 
     bath 
     bed 
     sqft (in 100 square feet) 
     total 
     view 
 
  Standard T  
Parameter Estimate Error Statistic P-Value 
CONSTANT -42.6274 9.50374 -4.48533 0.0000 
bath -10.0432 3.49189 -2.87614 0.0061 
sqft 3.02471 0.296349 10.2066 0.0000 
total 10.7836 2.06048 5.23351 0.0000 
 
Analysis of Variance 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Model 30780.2 3 10260.1 131.95 0.0000 
Residual 3576.84 46 77.7575   
Total (Corr.) 34357.0 49    
 
R-squared = 89.5892 percent 
R-squared (adjusted for d.f.) = 88.9102 percent 
Standard Error of Est. = 8.81802 
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Mean absolute error = 5.89115 
Durbin-Watson statistic = 1.53269 (P=0.0298) 
Lag 1 residual autocorrelation = 0.207625 
 
Stepwise regression 
Method: forward selection 
F-to-enter: 4.0 
F-to-remove: 4.0 
 
Step 0: 
0 variables in the model.  49 d.f. for error. 
R-squared =  0.00%     Adjusted R-squared =   0.00%     MSE = 701.164 
 
Step 1: 
Adding variable sqft with F-to-enter =240.985 
1 variables in the model.  48 d.f. for error. 
R-squared = 83.39%     Adjusted R-squared =  83.04%     MSE = 118.889 
 
Step 2: 
Adding variable total with F-to-enter =16.5564 
2 variables in the model.  47 d.f. for error. 
R-squared = 87.72%     Adjusted R-squared =  87.19%     MSE = 89.7887 
 
Step 3: 
Adding variable bath with F-to-enter =8.2722 
3 variables in the model.  46 d.f. for error. 
R-squared = 89.59%     Adjusted R-squared =  88.91%     MSE = 77.7575 
 
Final model selected. 
 

Summary 

Generally all three stepwise procedures will provide the same model.  Under extreme 

collinear conditions (explanatory variables) the final results may be different.  Keep in mind 

that stepwise procedures are good exploratory techniques, to provide the model builder with 

some insight.  One should not be fooled into thinking that stepwise models are the best 

because the “computer generates the models.”  Stepwise procedures fail to consider things 

such as outliers, residual patterns, autocorrelation, and theoretical considerations. 
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RELATIONSHIPS BETWEEN SERIES 
 
When building models one frequently desires to utilize variables that have significant linear 

relationships.  In this section we discuss correlation as it pertains to cross sectional data, 

autocorrelation for a single time series (demonstrated in the previous chapter), and cross 

correlation, which deals with correlations of two series.  Hopefully, the reader will note the 

relationship between correlation, autocorrelation, and cross correlation. 

Correlation 

As we mentioned previously, when we talk of statistical correlation we are discussing a value 

which measures the linear relationship between two variables.  The statistic 
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where Sy and Sx represent the sample standard deviation of Y and X respectively, measures 

the strength of the linear relationship between the variables Y and X.  Again we are not 

going to dwell on the mathematics, but will be primarily concerned with the interpretation. 

To interpret the correlation coefficient, it is important to note that the denominator is 

included so that values generated are not sensitive to the choice of metrics (i.e. inches vs. 

feet, ounces vs. pounds, cents vs. dollars, etc.).  As a result, the range of possible values for 

the correlation coefficients range from -1.0 to 1.0. 

Since the denominator is always a positive value, one can interpret the sign of the 

correlation coefficient as the indicator of relationship of how X and Y move together.  For 

instance, if the correlation coefficient is positive, this indicates that positive (negative) 
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changes in X tend to accompany positive (negative) changes in Y (i.e. X and Y move in the 

same direction).  Likewise, a negative correlation value indicates that positive (negative) 

changes in X tend to accompany negative (positive) changes in Y (i.e. X and Y move in 

opposite directions). 

The absolute value of the correlation coefficient indicates how strong of a linear relationship 

two variables have.  The closer the absolute value is to 1.0 the stronger the linear relationship. 

To summarize we consider the plots in the following figures, where we show seven different 

values for the correlation coefficient.  Note that (1) the sign indicates whether the variables 

move in the same direction and (2) the absolute value indicates the strength of the linear 

relationship. 

The following scatterplots16 show how the correlation coefficient (r) measures the strength of 

a linear relationship for r=0, 0.3, 0.6, 0.9, -0.3, -0.6, -0.9, 1, -1. 

 

 

 

 

 

 

 

 

 

 

                                                 
16 Obtained at the website: http://www.ba.infn.it/~zito/museo/esp148/cor7.html. 
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Figure 1. Scatterplots for correlation coefficient r=0, 0.3, 0.6, 0.9, -0.3, -0.6, -0.9, 1, -1 
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One way to find the correlation coefficient between two variables is to perform simple 

regression. Below is the stock beta example for American Express you saw before. Note the 

correlation coefficient of 0.722133 above R-squared=52.1475%. Take the square root of this 

R-squared, or 52.1475% and you will get 0.722132, the correlation coefficient! The small 

difference is due to rounding error. 

 

American Express (AXP) 

The model we specify, using the equation is as follows:  

return_AXPt = α + β  return_SP500t + εt 

which can be estimated using StatGraphics 

                                                       
The results from StatGraphics appear in Table 5: 
 
Simple Regression - return_AXP vs. return_SP500 
Dependent variable: return_AXP 
Independent variable: return_SP500 
Linear model: Y = a + b*X 
 
Coefficients 
 Least Squares Standard T  
Parameter Estimate Error Statistic P-Value 
Intercept 0.00254476 0.00450917 0.564351 0.5739 
Slope 1.17057 0.116277 10.0671 0.0000 
 
Analysis of Variance 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Model 0.195745 1 0.195745 101.35 0.0000 
Residual 0.179623 93 0.00193143   
Total (Corr.) 0.375368 94    
 
Correlation Coefficient = 0.722133 
R-squared = 52.1475 percent 
R-squared (adjusted for d.f.) = 51.633 percent 
Standard Error of Est. = 0.043948 
Mean absolute error = 0.0319201 
Durbin-Watson statistic = 2.10503 (P=0.6935) 
Lag 1 residual autocorrelation = -0.0904418 
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Autocorrelation 

As indicated by its name, the autocorrelation function will calculate the correlation 

coefficient for a series and itself in previous time periods.  Hence, when analyzing one series 

and determining how (linear) information is carried over from one time period to another, we 

will rely on the autocorrelation function.   

The autocorrelation function is defined as: 

( )( )[ ]
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where again Sx and Sx(t-k) are the sample standard deviations of Xt and Xt-k; which if you 

think about it are the same value.  Hence when you substitute Xt and Xt-k into the correlation 

equation for Y and X you can see the similarity.  The one difference is with the time element 

component and hence the inclusion of k.  What k represents is the “lag” factor.  So when one 

calculates r(1), that is the sample autocorrelation of a time series variable and itself 1 time 

period ago, r(2) is the sample autocorrelation of a time series variable and itself 2 time 

periods ago, r(3) is the sample autocorrelation of a time series variable and itself 3 time 

periods ago, etc. 

 To illustrate the value of the autocorrelation function, consider the series TSDATA.BUBBLY 

(StatGraphics data sample), which represents the monthly champagne sales volume for a firm.  

The plot of this series shows a strong seasonality component as shown on the next page  in 

Figure 2.  
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Figure 2.  Time Sequence Plot for Bubbly Data 
 
 The autocorrelation function can be displayed numerically, Table 1, below: 
 
 

    Table 1.    Estimated autocorrelations for TSDATA.bubbly                           
  ----------------------------------------------------------------                 
   Lag    Estimate  Stnd.Error     Lag    Estimate  Stnd.Error                     
  ----------------------------------------------------------------                 
     1      .48933      .10911       2      .05787      .13269                     
     3     -.15498      .13299       4     -.25001      .13512                     
     5     -.03906      .14052       6      .03647      .14065                     
      7     -.03773      .14076       8     -.24633      .14088                     
      9     -.18132      .14592      10     -.00307      .14858                     
    11      .37333      .14858      12      .80455      .15935                     
    13      .40606      .20200      14      .02545      .21150                     
    15     -.17323      .21153      16     -.24418      .21322                     
    17     -.05609      .21652      18      .02920      .21669                     
    19     -.03339      .21674      20     -.20632      .21680                     
    21     -.14682      .21913      22     -.01295      .22029                     
    23      .27869      .22030      24      .60181      .22446                     
  ----------------------------------------------------------------                 
                                                                                

                                                                                 
 

The autocorrelation function can also be displayed graphically (where dotted lines -- 

symmetric about 0 -- represent the significance limits) as shown in Figure 3.  
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Figure 3.  Estimated Autocorrelations 
 

 

By analyzing the display, the autocorrelation at lags 1, 11, 12, 13, and 24 are all significant 

(α = 0.05).  Hence, one can conclude that there is a linear relationship between sales in the 

current time period and itself and 1, 11, 12, 13, and 24 time periods ago.  The values at 1, 11, 

12, 13, and 24 are connected with a yearly cycle (every 12 months). 

 
Stationarity 

The next topic we wish to discuss in this section is the cross correlation function, which will 

be used to examine the relationship between two series displaced by k time periods.  This 

will allow us to begin identifying leading indicators.  However in order to discuss the cross 

correlation function, we first need to review what it means for a series to be stationary.  This 

discussion is necessary because the interpretation of the cross correlation function only 

makes useful sense if both series involved are stationary. 
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Recall, a series is stationary if it has a constant mean and variance.  Common departures from 

stationarity (i.e. non-stationary series) are shown below: 

 

 
 
When a series is nonstationary because of a changing variance, one can treat this problem by 

taking logs of the data [logs in this course will be natural logs (Ln), not common logs (base 

10)].  When a series is nonstationary due to a changing mean then one can take differences to 

treat that problem.  If seasonality exists then one may in addition to taking differences of 

consecutive time periods, take seasonal differences. 

If a nonstationary series has a nonconstant mean and a nonconstant variance then differences 

and logs may both be required to achieve a transformation to a stationary series.  When 

taking both logs and differences one must take the logs first (i.e. treat the nonconstant 

variance and the attack the nonconstant mean).  Why? 

Cross Correlation 

With the knowledge discussed in the autocorrelation section and the stationarity section, we 

are now prepared to discuss the cross correlation function, which as we said before is 

designed to measure the linear relationship between two series when they are displaced by k 
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time periods.  The cross correlation function is shown below.  (The formula is shown on 

extra large type to highlight the components of the formula.) 
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To interpret what is being measured in the cross correlation function one needs to combine 

what we discussed about the correlation function and the autocorrelation function.  Again 

note, like in the autocorrelation function, that k can take on integer values, only now k can 

take on positive and negative values. 

For instance, let Y represent SALES and X  represent ADVERTISING for a firm.  If k = 1, then 

we are measuring the correlation between SALES in time period t and ADVERTISING in time 

period t-1. i.e. we are looking at the correlation between SALES in a time period and 

ADVERTISING in the previous time period.  If k = 2, we would be measuring the correlation 

in SALES in time period t and ADVERTISING two time periods prior.  What if k = 3, k = 

4, ....?   Note that when k is zero we are considering the relationship of  ADVERTISING in the 

same time periods. 

When k takes on negative values then our interpretations are the same as above, except that 

now we are looking at cases were Y (SALES) are leading indicators for X (ADVERTISING).  

This is the “opposite” of what we were doing with the positive values for k.  Note the cross 

correlation function is not symmetric about 0. i.e. 

rxy (k) ≠ rxy (-k)    for all x,y, k ≠ 0 

 

 



 125

An Example 
 

To illustrate the cross correlation function, we consider the data 
TSDATA.units and TSDATA.leadind.  This data is sample data from 
Statgraphics and resides on the network. 

 
The joint plot of units and leadind, is shown in Figure 4 on the following 
page.  Note how leadind “leads” units.  And how both series are 
nonstationary.  Given at least one of the series is nonstationary, the cross 
correlation function will be meaningless if it is applied to the original data.  
Since both series can be transformed to stationary series by simple differences 
(verify this), we will apply the cross correlation function to the differenced 
series for both series. 
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Figure 4.  Time Sequence Plot of Lead and Lag Indicators 
 

 

Looking at the CCF (cross correlation plot) plot displayed in Figure 5 on the next page, we 

can see significant cross correlation values at lags 2 and 3.  Given leadind was the input (X t-

k) value and units is the output (Yt) value, we can conclude that leadind is a leading 

indicator of units by 2 and 3 time periods.  So a change in leadind will result in a change in 
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units two and three time periods later.  Note it takes two time periods for a change in leadind 

to show up in units. 

(Note:  for a situation where it is of interest to determine whether advertising leads sales, then 

advertising would be the input and sales would be the output.) 
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Figure 5.  Estimated Cross-Correlations 
 

 

Questions: 

• Does units lead leadind? 

• What do you think would be the relationship between sales and advertising for 

a firm? 

• In the units/leadind example, what does the CCF value for k = 0 mean? 
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INTERVENTION ANALYSIS 

 
In this section we will be introducing the topic of intervention analysis as it applies to 

regression models.  Besides introducing intervention analysis, other objectives are to review 

the three-phase model building process and other regression concepts previously discussed.  

The format that will be followed is a brief introduction to a case scenario, followed by an 

edited discussion that took place between an instructor and his class, when this case was 

presented in class.  The reader is encouraged to work through the analysis on the computer as 

they read the narrative.  (The data resides in the file FRED.SF). 

As you work through the analysis, keep in mind that the sequence of steps taken by one 

analyst may be different from another analysis, but they end up with the same result.  What is 

important is the thought process that is undertaken. 

 
Scenario:  You have been provided with the monthly sales (FRED.SALE) 
and advertising (FRED.ADVERT) for Fred’s Deli, with the intention that 
you will construct a regression model which explains and forecasts sales.  
The data set starts with December 2000. 

 
 
Instructor: What is the first step you need to do in your analysis? 
Students: Plot the data. 
 
Instructor: Why? 
Students: To see if there is any pattern or information that helps specify the model. 
 
Instructor: What data should be plotted? 
Students: Let’s first plot the series of sales. 
 
Instructor: Here is the plot of the series first for the sales.  What do you see? 
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Students: The series seems fairly stationary.  There is a peak somewhere in 2005.  It is a 

little higher and might be a pattern. 
 
Instructor: What kind of pattern?  How do you determine it? 
Students: There may be a seasonality pattern. 
 
Instructor: How would you see if there is a seasonality pattern? 
Students: Try the autocorrelation function and see if there is any value that would 

indicate a seasonal pattern. 
 
Instructor: OK.  Let’s go ahead and run the autocorrelation function for sales.  How many 

time periods would you like to lag it for? 
Students: Twenty-four. 
 
Instructor: Why? 
Students: Twenty-four would be two years worth in a monthly value. 
 
Instructor: OK, let’s take a look at the autocorrelation function of sales for 24 lags. 
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Instructor: What do you see? 
Students: There appears to be a significant value at lag 3, but besides that there may 

also be some seasonality at period 12.  However, it’s hard to pick it up 
because the values  are not significant.  So, in this case we don’t see a lot of 
information about sales as a function of itself. 

 
Instructor: What do you do now? 
Students: See if advertising fits sales. 
 
Instructor: What is the model that you will estimate or specify? 
Students: Salest = β0 + β1 Advertt + ε1. 
 
Instructor: What is the time relationship between sales and advertising? 
Students: They are the same time period. 
 
Instructor: OK, so what you are hypothesizing or specifying is that sales in the current 

time period is a function of advertising in the current time period, plus the 
error term, correct? 

Students: Yes. 
 
Instructor: Let’s go ahead and estimate the model.  To do so, you select model, 

regression, and let’s select a simple regression for right now.  The results 
appear on the following page. 
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Instructor: What do you see from the result?  What are the diagnostic checks you would 

come up with? 
Students: Advertising is not significant. 
 
Instructor: Why? 
Students: The p-value is 0.6335; hence, advertising is a non-significant variable and 

should be thrown out.  Also, the R-squared is 0.000, which indicates 
advertising is not explaining sales. 

 
Instructor: OK, what do we do now?  You don’t have any information as its past for the 

most part, and you don’t have any information as advertising as current time 
period, what do you do? 

Students: To see if the past values of advertising affect sales. 
 
Instructor: How would you do this? 

Regression Analysis - Linear model: Y = a + b*X
-----------------------------------------------------------------------------
Dependent variable: sales
Independent variable: advert
-----------------------------------------------------------------------------
                               Standard          T
Parameter       Estimate         Error       Statistic        P-Value
-----------------------------------------------------------------------------
Intercept       113462.0         9049.5        12.5379         0.0000
Slope          -0.119699       0.250226      -0.478362         0.6335
-----------------------------------------------------------------------------

                           Analysis of Variance
-----------------------------------------------------------------------------
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value
-----------------------------------------------------------------------------
Model                   1.08719E8      1    1.08719E8       0.23       0.6335
Residual               4.46602E10     94    4.75108E8
-----------------------------------------------------------------------------
Total (Corr.)          4.47689E10     95

Correlation Coefficient = -0.0492793
R-squared = 0.242845 percent
Standard Error of Est. = 21797.0
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Students: Look at the cross-correlation function. 
 
Instructor: OK.  Let’s look at the cross-correlation between the sales and advertising.  

Let’s put in advertising as the input, sales as the output, and run it for 12 lags - 
one year on  either side.  Here is the result of doing the cross-correlation  

function, what do you see? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Students: There is a large “spike” at lag 2 on the positive side.  What it means is that 

there is a strong correlation (relationship) between advertising two time 
periods ago and sales in the current time period. 

 
Instructor: OK, then, what do you do now? 
Students: Run a regression model where sales is the dependent variable and advertising 

lagged two (2) time periods will be the explanatory variable. 
 
Instructor: OK, this is the model now we are going to specify 

 Salest = β0 + β1 Advertt-2 + ε1 
 

What we are seeing here is that sales is a function of advertising two time 
periods ago.  So, at this point this is the model that you have specified.  Going 
to the three-phase model building process, let’s now estimate the model, and 
then we will diagnostically check it.  The estimation results for this model are 
as follows: 
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Instructor: Looking at the estimation results, we are now ready to go ahead and do the 

diagnostic checking.  How would you analyze the results at this point from the  
estimation phase? 

Students: We are getting 2 lag of advertising as being significant, since the p-value is 
0.0000. So, it is extremely significant and the R-squared is now 0.3776. 

 
Instructor: Are you satisfied at this point? 
Students: No. 
 
Instructor: What would you do next? 
Students: Take a look at some diagnostics that are available. 
 
Instructor: Such as what? 
Students: We can plot the residuals, look at the influence measures, and a couple other 

things. 
 

Multiple Regression Analysis
-----------------------------------------------------------------------------
Dependent variable: sales
-----------------------------------------------------------------------------
                                       Standard          T
Parameter               Estimate         Error       Statistic        P-Value
-----------------------------------------------------------------------------
CONSTANT                 56480.4        7184.33         7.8616         0.0000
lag(advert,2)            1.51372       0.199747        7.57819         0.0000
-----------------------------------------------------------------------------

                           Analysis of Variance
-----------------------------------------------------------------------------
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value
-----------------------------------------------------------------------------
Model                  1.68543E10      1   1.68543E10      57.43       0.0000
Residual               2.70002E10     92     2.9348E8
-----------------------------------------------------------------------------
Total (Corr.)          4.38544E10     93

R-squared = 38.4323 percent
R-squared (adjusted for d.f.) = 37.7631 percent
Standard Error of Est. = 17131.3
Mean absolute error = 10777.8
Durbin-Watson statistic = 1.1601
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Instructor: OK.  Let’s go ahead and first of all plot the residuals.  What do residuals 
represent?  Remember that the residuals represent the difference between the 
actual values and the fitted values.  Here is the plot of the residuals against 
time (the index): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Instructor: What do you see? 
Students: There is a clear pattern of points above the line, which indicates some kind of 
   information there. 
 
Instructor: What kind of information? 
Students: It depends on what those values are. 
 
Instructor: Let us take a look at a feature in Statgraphics.  When one maximizes the pane, 

which displays the residual graph versus time (row), one is then able to click 
on any point (square) and find out which observation it is by looking above 
the graph in the "row" box. 

 
We are now able to identify each of the points by lining up the plus mark on 
each point and clicking.  If you do that for the first point, you will notice that 
X is 13, the second point, X is 25 and the third point, X is 37.  The fourth 
point that is out by itself is 49. 

 
As you see what is going on there, you have a pattern of every 12 months.  
Recall  that we started it off in December.  Hence each of the clicked points is 
in December.  Likewise, if you see the cluster in the middle, you will notice 
that those points correspond to observations 56, 57, 58, 59, 60, and the 61.  
Obviously, something is going on at observation 56 through 61. 
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So, if you summarize the residuals, you have some seasonality going on 

at the month 13, 25,.... i.e. every December has a value, plus something extra 
happen starting with 56th value and continues on through the 61st value.  We 
could also obtain very similar information by taking a look at the "Unusual 
Residuals" and "Influential Points"  

Instructor: To summarize from our residuals and influential values, one can see that what 
we have left out of the model at this time are really two factors.  One, the 
seasonality factor for each December, and two, an intervention that occurred 
in the middle part of 2005 starting with July and lasting through the end of 
2005.  This may be a case where a particular salesperson came on board and 
some other kind of policy/event may have caused sales to increase 
substantially over the previous case.  So, what do you do at this point?  We 
need to go back to incorporate the seasonality and the intervention. 

Students: The seasonality can be accounted for by creating a new variable and 
assigning “1”for each December and “0” elsewhere. 

 
Instructor: OK, what about the intervention variable? 
Students: Create another variable by assigning a “1” to the months 56, 57, 58, 59, 60, 

and 61.  Or we figure out the values for July through December in 2005.  i.e. 
“1” for the values from July 2005 to December 2005 inclusive, and zero 
elsewhere. 

 
Instructor: Very good.  So, what we are going to do is to run a regression with these two  

additional variables.  Those variables are already included  in the file.  One 
variable is called FRED.INTERVENT and if you look at it, it has “1” for the 
values from 56 to 61, and “0” elsewhere.  Other variable FRED.DEC has 
values of “1” only for December values, “0” elsewhere.  So, what is the model 
we are going to estimate? 

Students: Salest = β0 + β1 Advertt-2 β2 Dect + β3 Interventt + ε1. 
 
Instructor: What does this model say in words at this point? 
Students: Sales in the current time period is a function of advertising two time periods 

ago, a dummy variable for December and intervention variable for the event 
occurred in 2005.  

 
Instructor: Good.  Let’s summarize what we have done. 

You started off with a model that has advertising two time periods ago as 
explanatory variable, but you say some information was not included in that 
model.  That is, we are missing some information that is included in the data.  
Then, we looked at the residuals and the influence values, and we came up 
with two new variables that incorporated that missing information.  Having re-
specified the model, we are now going to re-estimate, and diagnostic check 
the revised model.  The estimations for the revised model are shown on the 
following page: 
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Instructor: Given these estimation results, how would you analyze (i.e. diagnostically 

check) the revised model? 
Students: All the variables are significant since the p-values are all 0.0000 (truncation).  

In addition, R-squared value has gone up tremendously to 0.969 (roughly 97 
percent). In other words, R2 has jumped from 37 percent to approximately 97 
percent, and the standard error has gone down substantially from 17000 to 
about 3800.  As a result, the model looks much better at this time.  

 
Instructor: Is there anything else you would do? 
Students: Yes, we will go back to diagnostic check again to see if this revised model still 

has any information that has not been included, and hence can be improved.  
 
Instructor: What is some diagnostic checking you would try? 
Students: Look at the residuals again, and plot it against time.  
 
Instructor: OK, here is the plot of the residual against time.  Do you see any information? 

Multiple Regression Analysis
-----------------------------------------------------------------------------
Dependent variable: sales
-----------------------------------------------------------------------------
                                       Standard          T
Parameter               Estimate         Error       Statistic        P-Value
-----------------------------------------------------------------------------
CONSTANT                 42539.4        1632.99          26.05         0.0000
lag(advert,2)            1.73904      0.0447512        38.8602         0.0000
december                 38262.6        1511.04         25.322         0.0000
intervent                50700.6        1614.95        31.3946         0.0000
-----------------------------------------------------------------------------

                           Analysis of Variance
-----------------------------------------------------------------------------
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value
-----------------------------------------------------------------------------
Model                   4.2551E10      3   1.41837E10     979.39       0.0000
Residual                 1.3034E9     90    1.44822E7
-----------------------------------------------------------------------------
Total (Corr.)          4.38544E10     93

R-squared = 97.0279 percent
R-squared (adjusted for d.f.) = 96.9288 percent
Standard Error of Est. = 3805.55
Mean absolute error = 3015.79
Durbin-Watson statistic = 1.90283
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Students: No, the pattern looks pretty much random.  We cannot determine any 

information left out in the model with the series of the structure. 
 
Instructor: OK, anything else you would look at? 
Students: Yes, let us look at the influence measures.  
 
Instructor: OK, when you look at the "Unusual Residuals" and "Influential Points" 

options, what do you notice about these points. 
Students: They have already been accounted for with the December and Intervention 

variables.  
 
Instructor: Would you do anything differently to the model at this point? 
Students: We don’t think so. 
 
Instructor: Unless you are able to identify those points with particular events 

occurred, we do not just keep adding dummy variables in to get rid of the 
values that have been flagged as possible outliers.  As a result, let us 
assume that we have pretty much cleaned things up, and at this point, you 
can be satisfied with the model 

  that you have obtained. 
 
Summary 
 
The objectives in this section, once again are to introduce the concepts of intervention 

analysis, and review the three-phase model building process.  To do this, we look at the 

situation where we have sales and advertising, in particular, we have monthly values starting 

in December 2005. 
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The three-phase model building process talks about specifying, estimating, and diagnostic 

checking a model.  In our analysis the first step we did was try to decide what would be an 

appropriate model to specify, that was what variable or variables helped explain the variation 

in sales.  As we saw, advertising in the current time period did not affect sales.  When we 

used the cross-correlation function, however, we were able to see that advertising two time 

periods prior had an effect on sales.  Thus, we ran the simple linear regression of sales 

against advertising two time periods prior.  From this regression, we looked at the diagnostic 

checks and noticed that a fair amount of information had been left out of the model.  In 

particular, we had left out two factors.  The first one was the seasonality factor that occurred 

in each December, and the second one was an intervention that happened in the last half of 

2005, from July to December 2005.  To incorporate these two factors into the model, we set 

up two additional variables.  The revised model increased R-squared substantially and 

reduced the means-squared.  Thus, the revised model was our final model. 
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CROSSTABULATIONS 
 

In this section we will be focusing our attention on a technique frequently used in analyzing survey 

results, cross tabulation.  The purpose of cross tabulation is to determine if two variables are 

independent or whether there is a relationship between them. 

To illustrate cross tabulation assume that a survey has been conducted in which the following questions 

were asked: 

 
 -- What is your age 
      ____  less than 25 years   ____  25-40  _____ more than 40 
 
 -- What paper do you read, print or online edition 
      ____  Chronicle    ____  BEE   ___ Times 
 
 -- What is your annual household gross income  
      ____ < $35,000  ____ $35,000 - $70,000   ___ >$70,000 

 
Letting the first response for each question be recorded as a 1, the second as a 2 and the third as a 3 1

17, 

the file CLTRES.SF6 contains 200 responses. 

We will first consider the hypothesis test generally referred to as a test of dependence: 
 
             H0:   INCOME and PAPER are independent 
            H1:   INCOME and PAPER are dependent. 
 

To perform this test via StatGraphics, we first pull up the data file CLTRES.SF, then we go to the main 
menu and select 

 
               Describe 
                       Categorical Data 
                                                 Cross tabulation 
  

                                                 
 17 For example for the second question about the paper, we will create a variable called PAPER, 
with Chronicle = 1, BEE = 2 and Times = 3. 
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and fill one of the variables as the row variable and the other as the column variable.  For our example 

we will select Income as the row variable and Paper as the column variable.  For the desired output we 

go to the Tables options and select the Frequency Table and Tests of Independence options. 

The Tests of Independence option gives us the value of the chi-square statistic for the hypothesis (see 

Figure 2).  This value is calculated by comparing the actual observed number for each cell (combination 

of levels for each of the two variables) and the expected number under the assumption that the two 

variables are independent. 

Figure 2 

Tests of Independence 
Test Statistic Df P-Value 
Chi-Squared 19.394 4 0.0007 
 

Since the p-value for the chi-square test is 0.0007, which is less than the value of α = 0.05, we conclude 

that there is enough evidence to suggest that INCOME and PAPER are dependent.  Hence it is 

appropriate to conclude that income is a factor in determining who read which paper. Selecting the 

Frequency Table option provides us with the following output (pane): 

Figure 3 

Frequency Table for income by paper 
 1 2 3 Row Total 
1 25 38 14 77 
 12.50% 19.00% 7.00% 38.50% 
2 18 41 13 72 
 9.00% 20.50% 6.50% 36.00% 
3 3 44 4 51 
 1.50% 22.00% 2.00% 25.50% 
Column Total 46 123 31 200 
 23.00% 61.50% 15.50% 100.00% 
Cell contents: 
    Observed frequency 
    Percentage of table 
 
The StatAdvisor 
This table shows how often the 3 values of income occur together with each of the 3 values of paper.  The first number in 
each cell of the table is the count or frequency.  The second number shows the percentage of the entire table represented by 
that cell.  For example, there were 25 times when income equaled 1 and paper equaled 1.  This represents 12.5% of the total 
of 200 observations.   
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Note that the top entry for each cell represents the actual number of responses for the cell from the 

survey.  The bottom entry in each cell represents the cell's percentage for the entire sample (array). By 

right clicking on the output pane displayed in Figure 3, one can choose the Pane options and select 

either column or row percentages, for the lower entry.  Figure 4 below displays the frequency table for 

income by paper. 

Figure 4 

Frequency Table for income by paper 
 1 2 3 Row Total 
1 25 38 14 77 
 12.50% 19.00% 7.00% 38.50% 
 32.47% 49.35% 18.18%  
 54.35% 30.89% 45.16%  
2 18 41 13 72 
 9.00% 20.50% 6.50% 36.00% 
 25.00% 56.94% 18.06%  
 39.13% 33.33% 41.94%  
3 3 44 4 51 
 1.50% 22.00% 2.00% 25.50% 
 5.88% 86.27% 7.84%  
 6.52% 35.77% 12.90%  
Column Total 46 123 31 200 
 23.00% 61.50% 15.50% 100.00% 
Cell contents: 
    Observed frequency 
    Percentage of table 
    Percentage of row 
    Percentage of column 

 

For example, we can conclude from this figure that high income people tend to read the Bee (86.27% of 

the high income households read the Bee). What does this mean from a management perspective? 

 
 

THE READER IS ENCOURAGED TO ANALYZE WHETHER AGE AND PAPER ARE 
RELATED.                                                                                
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Practice Problem  
 

A survey was administered to determine whether various categories describing a student were 

independent.   Part of the survey questionnaire appears below: 

 

PLEASE PROVIDE THE REQUESTED INFORMATION BY CHECKING (ONCE).  
 
What is your: 
 
• age  ____ < 18   ____ 18 - 26  ____ > 26 
 
• gender    ____  male       ____  female 
 
• course load  ____ < 6 units  ____  6 - 12 units  ____  > 12 units 
 
• gpa  __ < 2.0  __ 2.0 - 2.5  ___ 2.6 - 3.0 __  3.1 - 3.5 __ > 3.5      
                   
• annual income  ___ < $20,000   ___ $20,000 - $30,000  ___ > 30,000 

 
 
The information is coded and entered in the file  STUDENT.SF  by letting the first response be 
recorded as a 1,  the second as a 2, etc. 
 
a. Test whether a relationship exists between the categories “age” and “gpa.”             
 H0:  ________________________________________________ 
 H1:  ________________________________________________ 
 p-value: _________ Decision: ___________________________  
 
b. Test whether a relationship exists between the categories “gender” and “income.” 
 H0:  ________________________________________________ 
 H1:  ________________________________________________ 
 p-value: _________ Decision: ___________________________  
 
c. Describe your observation of the table display for the categories “gender” and 
 “income.”       
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ANALYSIS OF VARIANCE 
 

In this section we will study the technique of analysis of variance (ANOVA), which is designed to 

allow one to test whether the means of more than two qualitative populations are equal.  As a follow 

up, we will discuss what interpretations can be made should one decide that the means are 

statistically different.  We will discuss two different models (experimental designs), one-way 

ANOVA and two-way ANOVA.  Each model assumes that the random variable of concern is 

continuous and comes from a normal distribution 1

18 and the sources of specific variation are strictly 

qualitative.  A one-way ANOVA model assumes there is only one (1) possible source of specific 

variation, while the two-way ANOVA model assumes that there are two (2) sources of specific 

variation.   

 The data in experimental designs are acquired for the variables when some part of the 

environment is controlled by the investigator.  This is in contrast with data in fields such as 

economics and finance as the data are observed (it is difficult to do experiments in an economic 

setting).  Statistical design of experiments began in the early 20th century by R. A. Fisher at the 

Rothamstead Agricultural Experimental Station in Great Britain.  The concepts developed then such 

as replication, randomization, and blocking are applicable to every scientific discipline and 

business (e.g., Total Quality Management, Six Sigma).  Making good business decisions requires 

reliable facts and information.  Facts are not easy to obtain and statistical design of experiments is 

about procedures for obtaining reliable facts.  There are a number of questions that need to be 

answered in a statistical study: 

                                                 
18 The results of the ANOVA models are robust to the assumption of normality  (i.e. one need not be concerned 
about the normality assumption). 
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 1. What is the problem to be solved? The experiment confirms or explores something (e.g. is 

 the new marketing campaign effective?). 

 2. What are the responses in the study (dependent variables)? 

 3. What factors are going to be varied (independent variables)? What “levels” (or values) of 

 these factors will be employed in the experiment?  What combinations of these factors will 

  be considered? The levels of the factors (or the combination of factors) are called 

 treatments.   The factors or their combinations represent possible sources of specific 

 variation. 

 4. What are the experimental units on which the response will be measure? How many  

     observations on them should be taken? How should experimental units be “blocked”? 

 5. In what order should the observations be collected? 

 6. How should “randomization” be done? 

 7. What is the most appropriate statistical model for the experiment (t-test, one-way ANOVA, 

     two-way ANOVA, ANCOVA, etc.)? 

 8. Data collection and processing, statistical estimation, significance (hypothesis) testing, 

 computation of statistics, statistical comparisons, interpretation of the results. 

  

 We use the following example to discuss some of the issues in experimental designs.  The t-

test for comparing two population means using two independent samples is illustrated in Example 1.  

Example 2 shows the t-test for comparing two population means using two matched samples. 
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Example 1 Discussion: Grow Tomatoes (Box, Hunter, and Hunter 1978) 
 
Will a change in the fertilizer mixture improve tomato yield? 
 
Situation: A gardener planted 11 tomato plants in a single row with 5 plants receiving the 
standard fertilizer mixture A and the other six receiving a supposedly improved mixture B.  
The two types of fertilizers were randomly applied to the plant position along the row: 
 
 
 
Randomization was done by shuffling 11 cards with 5 A’s and 6 B’s.   
 
Discussion Questions: 
 
1. Why randomization? Why not have a more convenient way of planting tomatoes - e.g. A 
for positions 1 to 5 and B for the rest. 
 

 2. What is the problem to be solved? 

 3. What are the responses in the study (dependent variables)? 

 4. What factors were varied (independent variables)? What “levels” (or values)       

 of these factors were employed in the experiment?  What combinations of these       

 factors were considered? The levels of the factors (or the combination of factors) are  

 called treatments.   The factors or their combinations represent possible sources of  

 specific variation.  What other possible sources of variation may occur? 

 5. What are the experimental units on which the response were measured? How many  

                 observations on them were taken? How should experimental units be “blocked”?   

 6. In what order should the observations be collected? 

 7. How should “randomization” be done? 

 8. What is the most appropriate statistical model for the experiment (t-test, one-way  

     ANOVA, two-way ANOVA, ANCOVA, etc.)? 

Position in row 1 2 3 4 5 6 7 8 9 10 11
Fertilizer A A B B A B B B A A B

Pounds of tomatoes 29.9 11.4 26.6 23.7 25.3 28.5 14.2 17.9 16.5 21.1 24.3
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 9. Data collection and processing, statistical estimation, significance (hypothesis) testing,  

     computation of statistics, statistical comparisons, interpretation of the results. 

Computation: 
 
A t-test for comparing independent samples should be applied.  The required computation is 
shown in the following table 
 

Standard Modified
Fertilizer A Fertilizer B

29.9 26.6
11.4 23.7
25.3 28.5
16.5 14.2
21.1 17.9

24.3
Sample size 5 6
Sample mean 20.84 22.53
Sample variance 52.50 29.51
Pooled variance 39.73  

 
The pooled sample variance was computed using this formula: 
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The test statistics is 
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+
.  What is the answer?  The critical value from the t table is 

2.262. 

 

What are the business implications of the result? What other factors could be taken into 

consideration to decide the type of fertilizer to use? 
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Example 2 

A San Francisco brokerage firm would like to sell their new financial products to affluent investors 

in California.  Two commercials (A and B) were developed and the firm would like to know which 

commercial is more effective.  The firm selected a simple random sample of 10 investors to form a 

focus group.  Each investor saw one commercial first and recorded a score indicating her/his likeness 

of the commercial.  The investor then sees the other commercial and recorded another score.  The 

order of showing the two commercials is assigned randomly to the investors, with some investors 

seeing Commercial A first and others seeing Commercial B first.  The scores of both commercials 

are listed below: 

Commercial A.  7, 6, 9, 4, 9, 5, 7, 3, 5, 6 

Commercial B.  9, 8, 7, 8, 7, 10, 8, 7, 9, 8 

Here we need to compare two population means.  This is a matched sample design (same investors 

look at both commercials) and the t-test for matched samples can be used.  Let dμ  be the mean of 

the difference values for the population of targeted affluent investors.  The hypotheses are: 

0
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If we assume that the population of differences is normal, the following test statistic has a t 

distribution with (n-1) degrees of freedom: 

d

d

dt
s n

μ−
= . 

StatGraphics can be used to find the test statistic and the corresponding p-value: Compare -> Two 

Samples -> Paired-Sample Comparison (then select hypothesis tests in Tables Options). 
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Exercise: Find the results using StatGraphics.  Which commercial is more effective?  What is the 

source(s) of specific variation in this design?  The firm originally selected two focus groups of 10 

investors each and compared their means using the independent samples t test:  

( )1 2

2 2
1 2

1 2
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t

s s
n n

− −
=

+

. 

What is/are the sources of specific variation in this second design? Discuss the difference between 

the two experimental designs.  Which design is better? 

 If in the above example there were three commercials to be compared, t test cannot be used.  

The technique known as one-way ANOVA should be employed. 

 

One-Way Analysis Of Variance 

 
The one-way ANOVA model assumes that the variation of the random variable of concern is made 

up of common variation and one possible source of specific variation, which is qualitative.  The 

purpose of the one-way ANOVA analysis is to see if the population means of the different 

populations (more than 2), as defined by the specific source of variation, are equal or not. 

For example, assume you are the utility manager for a city and you want to enter into a contract for a 

single supplier of streetlights.   

You are currently considering four possible vendors.  Since their prices are identical, you wish to see 

if there is a significant difference in the mean number of hours per streetlight. 1

19 

 

                                                 
19 In this example the random variable is the number of hours per light and the source of specific variation is the 
different vendors (qualitative). 



 149

Design 

The design we employ, randomly assigns experimental units to each of the populations.  In the street 

light example we will randomly select light bulbs from each population and then randomly assign 

them to various streetlights.  When there are an equal number of observations per population, then 

the design is said to be a balanced design.  Most texts when introducing a one-way ANOVA discuss a 

balanced design first, since the mathematical formulas that result are easier to present for a balanced 

design than an unbalanced design.  Since our presentation will not discuss the formulas, what we 

present does not require a balanced design, although our first example will feature a balanced design. 

Going back to our example, we randomly selected 7 light bulbs from each of the 
populations and recorded the length of time each bulb lasted until burning out.  The 
results are shown below where value recorded is in 10,000 hours. 

 
   
   GE               DOT  West            Generic 
  2.29  1.92  1.69  2.22 
  2.50  1.92  1.92  2.01 
  2.50  2.24  1.84  2.11 
  2.60  1.92  1.92  2.06 
  2.19  1.84  1.69  2.19 
  2.29  2.00  1.61  1.94 
  1.98  2.16  1.84  2.17 
 

 
 

One can easily calculate the sample means (X-BARS) for each population with the results 1

20 being 

2.34, 2.00, 1.79 and 2.10 for GE, DOT, West, and Generic respectively.  Recall that our objective is 

to determine if there is a statistically significant difference between the four population means, not 

the sample means.  To do this, note that there is variation within each population and between the 

populations.  Since we are assuming that the within variations are all the same, a significant 

between population variance will be due to a difference in the population means.  To determine if 

                                                 
20 There is some rounding. 



 150

the between population variation is significant, we employ the following StatGraphics steps so that 

we can conduct the hypothesis test: 

  H0:   All of the population means are the same 
  H1:   Not all population means are the same via an F statistic. 

Create a StatGraphics file [LGHTBULB -- notice spelling, 8 letters] with three variables.  The first 

variable [HRS] represents the measured value (hours per light bulb in 10,000 hours) and the second 

variable [BRAND] indicates to which population the observation belongs.  This can be accomplished 

by letting GE be represented by a 1, DOT by a 2, West by a 3, and Generic by a 4.  We will also 

created a third variable [Names] which is unnecessary for StatGraphics. 

 

  ROW  HRS  BRAND  NAMES 
 -----  ------- ------- --------- 
    1    2.29    1   GE 
    2    1.92    2   DOT 
     3    1.69    3   WEST 
     4    2.22    4   GENERIC 
    .     .     . 
    .     .     . 
   25    1.98    1 
   26    2.16    2 
     27    1.84    3 
   28    2.10    4              

 

Using the created data file LGHTBULB.SF, as shown above, we are now able to select the one way 

ANOVA option in StatGraphics by going to the main menu and selecting: 

   Compare 
    Analysis of Variance 

      One-way ANOVA 
  

 
and declaring hours as the dependent variable, along with  brand as the factor variable. 

 
The resulting output pane, when selecting the ANOVA table option, under Tables options, is  
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Table 1.  Output for One-Way ANOVA 
 

From this output we can now conduct the hypothesis test:  
 
   H0:  All four population means are the same 
   H1:  Not all four population means are the same 
 

by means of the F test.  Note that the F-ratio is the ratio of the between groups (populations) 

variation and the within groups (populations) variation 2

21.  When this ratio is large enough, then we  

say there is significant evidence that the population means are not the same.  To determine what is  

large enough, we utilize the p-value (Sig. level) and compare it to alpha.  Setting α = 0.05, we can  

see for our example that the p-value is less than alpha.  This indicates that there is enough evidence  

to suggest that the population means are different and we reject the null hypothesis.  To go one step  

further and see what kind of interpretation one can make about the population means, when it is 

determined that they are not all equal, we can utilize the means plot option under the Graphs option 

icon.    The resulting pane is shown below. 

 

                                                 
21The mean square values are estimates of the respective variances.  

ANOVA Table for hours by brand

                            Analysis of Variance
-----------------------------------------------------------------------------
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value
-----------------------------------------------------------------------------
Between groups            1.08917      3     0.363057      15.62       0.0000
Within groups            0.557714     24    0.0232381
-----------------------------------------------------------------------------
Total (Corr.)             1.64689     27
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Means and 95.0 Percent LSD Intervals
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Figure 1.  Intervals for Factor Means 

To interpret the means plot, note that the vertical axis is numeric and the figures depicted for each 

brand covers the confidence intervals for the respective population mean.  When the confidence 

intervals overlap then we conclude the population means are not significantly different, when there 

is no overlap we conclude that the population means are significantly different.  The interpretations 

are done taking the various pair-wise comparisons.  Interpreting Figure 1, one can see that GE (brand 

1) is significantly greater than all of the other three brands, WEST (brand 3) is significantly less than 

all of the others and that DOT (brand 2) and GENERIC (brand 4) are not significantly different.  The 

means table provides the same information but in a numerical format                    .                  
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Practice Problems 

1. A consumer organization was interested in determining whether any difference existed in the 

average life of four different brands of MP3 players.  A random sample of four batteries of each 

brand was tested.  Using the data in the table, at the 0.05 level of significance, is there evidence of a 

difference in the average life of these four brands of MP3 player batteries?  [Create the file 

MP3BAT.SF.] 

  

Brand 1 Brand 2 Brand 3 Brand 4 

12 19 20 14 

10 17 19 21 

18 12 21 25 

15 14 23 20 
 
 

2. A toy company wanted to compare the price of a particular toy in three types of stores in a 

suburban county:  Discount toy stores, specialty stores, and variety stores.  A random sample of four 

discount toy stores, six specialty stores, and five variety stores was selected.  At the 0.05 level of 

significance, is there evidence of a difference in the average price between the types of stores?   

[Create the file TOY.SF.] 

Discount 
Toy 

Specialty Variety 

12 15 19 

14 18 16 

15 14 16 

16 18 18 

 18 15 

 15  
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Two-Way Analysis Of Variance 

Given our discussion about the one-way ANOVA model, we can easily extend our discussion to a 

two way ANOVA model.  As stated previously, the difference between a one-way ANOVA and 

two-way ANOVA depends on the number qualitative sources of specific variation for the variable 

of concern. 

The two-way ANOVA model we will consider has basically the same assumptions as the one-way 

ANOVA model presented previously.  In addition we will assume the factors influence the variable 

of concern in an additive fashion.  The analysis will be similar to the one-way ANOVA, in that each 

factor is analyzed. 

To illustrate the two-way ANOVA model we consider an example where the dependent variable is 

the sales of Maggie Dog Food per week.  In its pilot stage of development Maggie Dog Food is 

packaged in four different colored containers (blue, yellow, green and red) and placed at different 

shelf heights (low, medium, and high).  As the marketing manager you are interested in seeing what 

impact the different levels for each of the two factors have on sales.  To do this you randomly assign 

different weeks to possess the different combinations of package colors and shelf height.  The results 

are shown below: 

           

                   Shelf Height  

                Low  Med  High 

    Blue  125 140 152 
 Can Color  Yellow 112 130 124 
    Green 85 105  93 
    Red  85  97  98 
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Given this design, we can test two sets of the hypotheses. 
 
 H0: The population means for all four colors is the same 
 H1: The population means for at least two colors are different 
 

and 
 
 H0: The population means for the different shelf heights are the same  
 H1: The population means for at least two of the shelf heights are different 
         
 

To conduct this analysis using StatGraphics we enter the data into a file called DOG.SF as shown in 

Table 2 below: 

  
 Table 2. 
 
  
                                                                                 
  SALES     COLOR       HGT                                                 
   ------------------------------------------------- 
     125.        B          L  
    112.        Y          L  
     85.        R          L  
     85.        G          L  
    140.        B          M  
    130.        Y          M  
    105.        R          M  
     97.        G          M  
    152.        B          H  
  124.        Y          H  
   93.        R          H  
   98.        G          H                                                
      

 
Now that the data is entered into the file DOG.SF, we are ready to have StatGraphics generate 

the required output.  To accomplish this we escape back to the main menu and select 

 
    Compare 
     Analysis of Variance 
      Multifactor ANOVA 
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then select  SALES  as the dependent variable and for the factors we select  COLOR and HEIGHT.  

{We do not choose to consider a covariate for this model).  When selecting the Tables option 

ANOVA Table, we get the following pane: 

 

 
 
 
 
 
 
 
 
 
 

   
 

Table 4 
 

 

Looking at the two-way ANOVA table (Table 4) one can see that the total variation is comprised of 

variation for each of the two factors (height and color) and the residual.  The F-ratios for the factors 

are significant as indicated by their respective p-values.  Hence, one can conclude that there is 

enough evidence to suggest that the means are not all the same for the different colors and that the 

means are not all the same for the different shelf heights. 

To determine what one can conclude about the relationship of the population means for each of the 

factors we look at the mean plot (table) for each of the factors.[see Graphs options] The mean plot 

for shelf height and color are shown in Figures  5 and 6 2

22. 

 

 

                                                 
22 To change the means plot from one variable to the other, one needs to right click on the pane and choose the 
appropriate Pane Option(s). 

Analysis of Variance for sales - Type III Sums of Squares
--------------------------------------------------------------------------------
Source                Sum of Squares     Df    Mean Square    F-Ratio    P-Value
--------------------------------------------------------------------------------
MAIN EFFECTS
 A:color                     4468.33      3        1489.44      47.75     0.0001
 B:height                    654.167      2        327.083      10.49     0.0110

RESIDUAL                     187.167      6        31.1944
--------------------------------------------------------------------------------
TOTAL (CORRECTED)            5309.67     11
--------------------------------------------------------------------------------
All F-ratios are based on the residual mean square error.
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Figure 5 
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Figure 6 

Interpreting the means plots just like we did for the one-way ANOVA example, we can make the 

following conclusions.  With regards to shelf height, the low shelf height has a lower population 

mean than both the medium and high shelf heights, while we are unable to detect a significant 

difference between the medium and high shelf heights.  With regards to the colors, the blue 

population mean is greater than the yellow population mean which is greater than both the green 

population mean and the red population mean and that we are unable to detect a significant 

difference between the green and red population means.  The mean tables (Tables options) provide 

the same results as the means plots, just that it is given in numerical format. 
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When two factors interact, the effect on the dependent variable of one factor depends on the specific 

value or level present for the other factor. We will illustrate this concept in class with an example. 
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Practice Problems 

1. The Environmental Protection Agency (EPA) of a large suburban county is 

studying coliform bacteria counts (in parts per thousand) at beaches within the 

county.  Three types of beaches are to be considered -- ocean, bay, and sound -- in 

three geographical areas of the county -- west, central, and east.  Two beaches of 

each type are randomly selected in each region of the county.  The coliform 

bacteria counts at each beach on a particular day were as follows: 

  Geographic 
Area 

 

Type of Beach West Central East 

Ocean 25   20  9   6 3   6 

Bay 32   39 18   24  9   13 

Sound 27   30 16   21 5   7 
 

 Enter the data and save as the file WATER.SF. 
 
 At the 0.05 level of significance, is there an 
 
 a. effect due to type of beach?       
 H0:  ________________________          H1: _______________________ 
 p-value: _____________________                Decision: __________________ 
 
 b. effect due to type of geographical area?     
 H0:  ________________________           H1: _______________________ 
 p-value: _____________________                Decision: __________________ 
 
 c. effect due to type of beach and geographical area(StatGraphics: after  
  fitting 2-way ANOVA, right-mouse click and select Analysis Options.  
  Change the Maximum Order Interaction to 2)?  OPTIONAL  
 H0:  ________________________             H1: _______________________ 
 p-value: _____________________                Decision: __________________ 
 

d. Based on your results, what conclusions concerning average bacteria count 
can be reached?  
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2. A DVD player repair service wished to study the effect of DVD brand and service 

center on the repair time measured in minutes.  Three DVD player brands (A, B, C) 

were specifically selected for analysis.  Three service centers were also selected.  

Each service center was assigned to perform a particular repair on two DVD players 

of each brand.  The results were as follows:  

  

  Service 
Centers 

Brand A Brand B Brand C 

 
1 

52 
57 

48 
39 

59 
67 

 
2 

51 
43 

61 
52 

58 
64 

 
3 

37 
46 

44 
50 

65 
69 

 
 Enter the data and save as the file  DVD.SF 

 
 At the .05 level of significance: 
 
 (a)  Is there an effect due to service centers? 
 (b)  Is there an effect due to DVD player brand? 
 (c)  Is there an interaction due to service center and DVD player brand? OPTIONAL 
 
3. The board of education of a large state wishes to study differences in class size 

between elementary, intermediate, and high schools of various cities.  A random sample of 

three cities within the state was selected.  Two schools at each level were chosen within 

each city, and the average class size for the school was recorded with the following results: 

 
Education 

Level 
City 

A 
City 

B 
City 

C 
Elementary 32, 34 26, 30 20, 23 
Intermediate 35, 39 33, 30 24, 27 
High School 43, 38 37, 34 31, 28 

 
 Enter the data and save as the file  SCHOOL.SF. 

 
 At the .05 level of significance: 
 (a)  Is there an effect due to education level? 
 (b)  Is there an effect due to cities? 
 (c)  Is there an interaction due to educational level and city?  OPTIONAL 
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4. The quality control director for a clothing manufacturer wanted to study the effect 

of operators and machines on the breaking strength (in pounds) of wool serge 

material.  A batch of material was cut into square yard pieces and these were 

randomly assigned, three each, to all twelve combinations of four operators and 

three machines chosen specifically for the equipment.  The results were as follows: 

 
 

 
Operator 

Machine 
I 

Machine 
II 

Machine  
III 

A 115  115  119 111  108  114 109  110  107 

B 117  114  114 105  102  106 110  113  114 

C 109  110  106 100  103  101 103  102  105 

D 112  115  111 105  107  107 108  111  110 
 

 Enter the data and save as the file  SERGE.SF. 
 
 
 At the .05 level of significance: 
 
 (a)  Is there an effect due to operator? 
 (b)  Is there an effect due to machine? 
 (c)  Is there an interaction due to operator and machine?  OPTIONAL 
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ANALYSIS OF COVARIANCE 
 
You are in the marketing department for Dino Dog Food Inc.  Over a 24 week period of 
time, the following data was collected for a randomized factorial design.  Note that there 
was replication.  The values in each cell, without parentheses, represent weekly sales.  
The values in parentheses represent the price, measured   
 
        Low                               Medium           High 
Blue 
 
 

454  (6) 
751          (3) 

    636         (4) 
    477         (6) 

  332           (7) 
  541           (5) 

Red 
 
 

544  (5) 
742          (3) 

    562         (5) 
    563         (5) 

  637           (4) 
  632           (4) 

Green 
 

359   (7) 
764         (3) 

    481         (6) 
    678         (4) 

  659           (4) 
  554           (5) 
 

Yellow 
 

       374         (7) 
       466         (6) 

    388         (7) 
    695         (4)   

  751           (3) 
  565           (5) 
 

  
Using a 2 way ANOVA model 
 Does color matter? 
 Does shelf height matter? 
Using price as a covariate 
 Does color matter? 
 Does shelf height matter? 
Write a summary of the exercise.  What is the message?  Think “Big Picture” 
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SAMPLING 
 
In business decision making, sampling plays an important role as the target population is too 

large to study. As an efficient method to obtain information about a population, one frequently 

needs to sample from a population.  For example, auditors at a credit card company have to 

sample among a large number of financial transactions. Market researchers have to resort to 

sampling to study all potential customers.  

 

Once sample data are collected, estimates (statistics) are calculated from the sample data to 

assess the values of the population parameter. A point estimator is a formula that produces a 

single number (point estimate) used as an estimate of the population parameter.  On the other 

hand, an interval estimator (or confidence interval) is a formula that produces a range (interval 

estimate) giving the likelihood that the interval contains the true population parameter. 

 

There are many different probabilistic sampling methods.  In addition to random sampling, two 

other frequently used techniques are stratified sampling and systematic sampling 2

23.  The type of 

sampling method appropriate for a given situation depends on the attributes of the population 

being sampled, sampling cost, and desired level of precision.  There are many reports of sample 

surveys in the media reporting the proportion of people having certain characteristics or opinion 

on certain issues.  A fact is that if proper sampling methods are applied in a survey, a sample of 

1500 is enough to gauge the proportion of the entire population of millions or billions to within 

3%.  It is certainly far cheaper and less time consuming to survey 1500 people than to ask a 

population of millions or billions.  The margin of error is used to measure how close the sample 

                                                 
23   There are many other techniques available but we will restrict our discussion to these. 
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proportion (from the survey) is to the population proportion.  It is the upper bound of the 

difference between the sample proportion and the true population proportion for at least 95% of 

all samples.  For example, the 2006 Sacramento State Annual Survey of the Region reports that 

27% of Sacramento Region residents believe the Sacramento Kings need a new arena.  The 

report includes the following statement: “The survey included 1,122 randomly selected adults in 

the Sacramento Region who were interviewed in English and Spanish. It has a margin of error of 

3 percent.”  The margin of error is calculated as 1 100%
Sample Size

× .  Thus, 

1 100% 0.029854 100% 3%
1122

× ≈ × ≈ .  This survey in fact means for about 95% of such 

properly conducted sample surveys, between 24% (27%-3%) and 30% (27%+3%) of Sacramento 

Region residents believe the Kings need a new arena.   

Exercise: 

Leaving Sacramento 

A survey from the fourth “Annual Survey of Public Opinion and Life Quality” in the Sacramento 

Region in April 2005 reported that one-third of the residents were seriously considering 

relocating (most stated leaving California) because of high housing cost.  The survey was 

conducted between February 15 and March 16 and randomly selected 1,002 adults in the 

Sacramento Region.  Compute the margin of error and the 95% confidence interval for the 

proportion (or percent) of all Sacramento region residents who were considering relocating due 

to high housing price. 

Avoiding Bias 

Our goal in conducting a sample survey is to obtain unbiased results about certain characteristics 

of the population via a sample.  We need to avoid the following types of bias in sample survey.  



 165

The first type is the selection bias, which occurs when the sampling method selects a sample that 

does not represent the population of interest.  The second type is the nonresponse bias, which 

occurs when the selected respondent does not respond or cannot be found to answer the survey.  

The third type is the response bias, which occurs when the respondent does not provide honest 

answers to the survey.  These biases are cases of nonsampling error. 

Exercise: Give at least one example for each type of bias. 

Terminology 
 

An element is the entity on which data are collected.  A population is the collection of all the 

elements in the study.  A sample is a part of the population.  The target population is the 

population to be made inference of.  The sampled population is the population from which the 

sample is selected.  For the sample results to be valid, the sampled population must be 

representative of the target population.  The population must be divided into sampling units 

before sampling begins.  Sampling units could be the elements or groups of the elements.  For 

example, to survey doctors in the Sacramento region who treat diabetes, this list of all diabetes 

doctors may not be available.  One thing that could be done is to select of sample of hospitals 

(sampling units) to survey and interview all the diabetes doctors (elements) in these hospitals.  

This list of all hospitals (sampling units) in the Sacramento region is called a frame, the list from 

which the sample is selected.  A list of all diabetes doctors is not available.  Sampling error 

occurs in that only a sample, not the entire population can be surveyed.  Many sampling methods 

have been developed to minimize the sampling error and some are discussed below. 

Simple Random Sampling 
 

A simple random sample is a sample in which every group of size n has an equal chance of being 

selected.  In order to conduct a random sample, one needs the frame (listing of all elements) and 
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then either by “drawing from the hat” or using a random number table 2

24 one obtains the elements 

selected for the sample.  An important question to answer is how large the sample size should be.   

Stratified Sample 

A stratified sample is appropriate to use when the population of concern has subpopulations 

(strata) that are homogenous within and heterogeneous between each other, with regards to the 

parameter of concern.  The reason it may be appropriate to use stratified sampling, as opposed to 

simple random sampling of the whole population, is that each subgroup will have relatively 

smaller variances than the overall population.  Hence, when we combine the results from the 

different subgroups, the aggregated variance (standard error) will be smaller than the same size 

sample from the entire population using simple random sampling. 

For example, assume we desire to estimate the average number of hours business students study 

per week.  One could use a simple random sample.  However, if one were to stratify based upon 

concentrations 2

25, take a random sample from each concentration, then the aggregated result 

would probably be more precise (smaller confidence interval) than the one from a random 

sample (same sample size).  The greater precision would come from the aggregation of strata 

(subpopulations) whose individual variances are less than the variance of the entire population. 

Systematic Sample 

Systematic sampling is a widely used technique when there is no pattern to the way in which the 

data set is organized.  The lack of pattern is important since a systematic sample involves 

selecting every nth observation.  For example, one may be selecting every 4th observation.  

Clearly, the technique could provide a biased estimate if there is a periodicity (seasonality) to the 

data and the sampling interval is a multiple of the period. 

                                                 
24   Many software packages, such as Stat Graphics, have random number generators. 
25   Other discriminating variables could be used, such as, age, premajor vs. upper division, etc... 



 167

Comparison Of Survey Sampling Designs 
 
Design   How to Select   Strengths/Weaknesses 
 
Simple Random Assign numbers to   Basic, simple, often costly.     
   elements using random   Must assign a number to each  element  
   numbers table.   in target population. 
 
Stratified  Divide population  into groups  With proper strata, can produce    
   that are similar within and   very accurate estimates.  Less 
   different between variable of  costly than simple random  
   interest.  Use random numbers  sampling.  Must stratify target  
   to select sample from each   population correctly. 
   Stratum.  
    

Systematic  Select every kth element  Produces very accurate estimates  
   from a list after a   when elements in population    
   random start.   exhibit order.  Used when simple   
       random or stratified sampling is    
       not practical [e.g.: population    
       size not known].  Simplifies    
       selection process.  Do not use    
       with periodic populations. 
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