Result of Standard chromatogram by Instructor				
Compound	Retention time (min)	Peak Area (µs ×min)	Conc. (ppm)	
Fluoride	2.75	0.976	4.88	
Chloride	3.70	3.836	20.0	
Nitrate	5.72	3.858	40.0	
Sulfate	6.72	5.207	40.0	

Chromatogram of my Solution A (IC # 1)				
Compound	Retention time (min)	Peak Area (µs ×min)		
Unknown	5.80	3.427		
Compare to Standard compounds retention time: my Unknown is : NO3-				

Estimated concentration of unknown:

$$\frac{A_{unk}}{A_{known}} = \frac{C_{unk}}{C_{known}}$$

$$\frac{3.427}{3.858} = \frac{C_{unk}}{40.0}$$

Note: Do same calculation for the concentration of [F-] in your home's tap water.

Make two lower and higher standard solutions (use volumetric flask & pipet):

[50% of conc. Of unknown]:

35.5 ppm × 0.5 = 17.75 ppm

Stock solution [NaNO₃] = 2000 ppm

 $2000 \times V = 17.75 \times 100$

V = 0.8875 mL (use 1.0 mL volumetric pipet)

Re-calculate for the new conc.:

 $2000 \times 1.0 = C \times 100$

C = 20 ppm

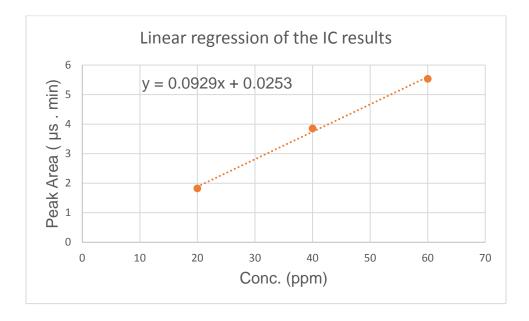
[150% of conc. Of unknown]:

35.5 ppm × 1.50 = 53.25 ppm

Stock solution [NaNO₃] = 2000 ppm

 $2000 \times V = 53.25 \times 100$

V = 2.6625 mL (use 3.0 mL volumetric pipet)


Re-calculate for the new conc.:

 $2000 \times 3.0 = C \times 100$

C = 60 ppm

Quantitative Analysis: Running Solutions A , STD 1 and STD 2			
Solution	Conc. (ppm)	Peak Area (µs ×min)	
A	?	3.580	
STD1	20	1.824	
STD2	60	5.539	
Instructor STD	40	3.858	

Plot peak area (A, STD1, STD2 and Instructor STD) verses concentration of nitrate ion:

Use the line equation from your graph:

Parea= 0.0929 C + 0.0253

Use the peak area of the solution A from the quantitative chromatogram:

3.580 = 0.0929 C + 0.0253

C = 38.2 ppm