- One of the most common tasks in chemistry is to determine the concentration of a chemical in an aqueous solution.
- However, what if other components in the solution distort the analyte's signal?

 This distortion is called a matrix interference or matrix effect.

- How to overcome matrix interferences?
- Used a technique: standard addition.

Matrix Interferences

- Sometimes, response to analyte can be decreased or increased by something else in the sample.
- Matrix refers to everything in the sample other than analyte.
- This presents a problem when the calibration standards are made up in a different matrix than the samples being analyzed
 - For example, the tap water samples vs. the calibration standards in the AAS lab

Standard Additions Calibration

- Standard additions are especially useful when matrix effects are important.
- A **standard addition** is a **known** quantity of **analyte** added to an **unknown** to increase the concentration of analyte.

C _x	Unknown analyte concentration
V_{x}	Unknown volume
C _s	Standard solution concentration
V _s	Standard solution volume
V_{t}	Total volume

Using an instrument:

$$S_{signal} = K \cdot C_{analyte}$$
 $C_{analyte} = C_x + C_S$
 $Molarity = C = \frac{n}{V}$
 $C_{analyte} = \frac{n_a}{V_{total}}$

$$n_{analyte} = C_{S} \cdot V_{S} + C_{X} \cdot V_{X}$$

$$C_{analyte} = \frac{C_{S} \cdot V_{S} + C_{X} \cdot V_{X}}{V_{t}}$$

$$S_{signal} = \frac{K \cdot C_{S} \cdot V_{S}}{V_{t}} + \frac{K \cdot C_{X} \cdot V_{X}}{V_{t}}$$

$$\frac{b}{m} = \frac{\frac{K \cdot C_x \cdot V_x}{V_t}}{\frac{K \cdot C_s}{V_t}} = \frac{C_x \cdot V_x}{C_s}$$

$$\frac{b}{m} = \frac{C_x \cdot V_x}{C_s}$$

$$C_{x} = \frac{b \cdot C_{s}}{m \cdot V_{x}}$$

C _x	Unknown analyte concentration
V _x	Unknown volume
C _s	Standard solution concentration

Uncertainty in the x-Intercept (u_x)

$$u_{x} = \frac{s_{y}}{|m|} \sqrt{\frac{1}{k} + \frac{1}{n} + \frac{(\bar{y})^{2}}{m^{2} \sum (x_{i} - \bar{x})^{2}}}$$

m = slope

k = number of replicate measurements for unknown

n = number of data points for calibration line

 \bar{y} = mean value of measured y for unknown x

 S_y = error of the regression