CHAPTER 2

The Data of Macroeconomics

2-1 Measuring the Value of Economic Activity: GDP
2-2 Measuring the Cost of Living: The CPI
2-3 Measuring Joblessness: The Unemployment Rate

Learning Objectives

Define the meaning and measurement of the most important macroeconomic statistics:

- Gross Domestic Product (GDP)
- The Consumer Price Index (CPI)
- The unemployment rate

Gross Domestic Product: Expenditure and Income

Two definitions:

- Total expenditure on domestically-produced final goods and services.
- Total income earned by domestically-located factors of production.

Expenditure equals income because every dollar spent by a buyer becomes income to the seller.

The Circular Flow

Value Added

Definition:

- A firm’s value added is the value of its output minus the value of the intermediate goods the firm used to produce that output.

Exercise: (Problem 2, p. 40)

- A farmer grows a bushel of wheat and sells it to a miller for $1.00.
- The miller turns the wheat into flour and sells it to a baker for $3.00.
- The baker uses the flour to make a loaf of bread and sells it to an engineer for $6.00.
- The engineer eats the bread.

Compute & compare value added at each stage of production and GDP.
Final Goods, Value Added, & GDP

GDP = value of final goods produced
= sum of value added at all stages of production.

The value of the final goods already includes the value of the intermediate goods, so including intermediate and final goods in GDP would be double-counting.

The Expenditure Components of GDP

Consumption (C)
Investment (I)
Government spending (G)
Net exports (NX)

Consumption (C)

Consumption: The value of all goods and services purchased by households (consumers), excluding new housing.

- Durable goods
 - last a long time (ex: cars, home appliances)
- Nondurable goods
 - last a short time (ex: food, clothing)
- Services
 - work done for consumers (ex: dry cleaning, air travel)

U.S. consumption, 2006

<table>
<thead>
<tr>
<th>Description</th>
<th>$ billions</th>
<th>% of GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption</td>
<td>$9,268.9</td>
<td>70.0%</td>
</tr>
<tr>
<td>Durables</td>
<td>1,070.3</td>
<td>8.1</td>
</tr>
<tr>
<td>Nondurables</td>
<td>2,714.9</td>
<td>20.5</td>
</tr>
<tr>
<td>Services</td>
<td>5,483.7</td>
<td>41.4</td>
</tr>
</tbody>
</table>

Investment (I)

- Two Definitions:
 - Definition 1: Spending on [the factor of production] capital.
 - Definition 2: Spending on goods bought for future use. Neither of these definitions involves the buying/selling of financial assets.
 - Buying/selling of a stock involves a transfer of ownership of an existing physical asset.
 - Firms typically sell financial assets to raise funds, in order to purchase physical capital.

Investment (I)

- Types of investment
 - Business Fixed Investment
 - Spending on plant and equipment that firms will use to produce other goods & services.
 - Residential Fixed Investment
 - Spending on housing units by consumers and landlords.
 - Inventory Investment
 - The change in the value of all firms’ inventories.
 - This is how we account for goods that are produced in one year, but sold in another.
Stock vs. Flow

- **Stock** is a quantity measured at a point in time. Example: "The U.S. capital stock was $26 trillion on January 1, 2006."
- **Flow** is a quantity measured per unit of time. Example: "U.S. investment was $2.5 trillion during 2006."

Investment vs. Capital

Note: Investment is spending on new capital.

Example (assumes no depreciation):

- 1/1/2007: economy has $500b worth of capital
- During 2007: investment = $60b
- 1/1/2008: economy will have $560b worth of capital

Classroom Example

Stock or flow?

1. the balance on your credit card statement
2. how much you study economics outside of class
3. the size of your compact disc collection
4. the inflation rate
5. the unemployment rate
U.S. government spending, 2006

<table>
<thead>
<tr>
<th></th>
<th>$ billions</th>
<th>% of GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Govt spending</td>
<td>$2,527.7</td>
<td>19.1%</td>
</tr>
<tr>
<td>Federal</td>
<td>926.6</td>
<td>7.0</td>
</tr>
<tr>
<td>Non-defense</td>
<td>305.6</td>
<td>2.3</td>
</tr>
<tr>
<td>Defense</td>
<td>621.0</td>
<td>4.7</td>
</tr>
<tr>
<td>State & local</td>
<td>1,601.1</td>
<td>12.1</td>
</tr>
</tbody>
</table>

Net exports: $NX = EX − IM$

- Definition: The value of total exports (EX) minus the value of total imports (IM).

National Income Accounting Identity

$$Y = C + I + G + NX$$

aggregate expenditure

value of total output

Question

Suppose a firm produces $10 million worth of final goods but only sells $9 million worth.

Does this violate the expenditure = output identity?

Why Output = Expenditure

Unsold output goes into inventory, and is counted as “inventory investment”...

...whether or not the inventory buildup was intentional.

In effect, we are assuming that firms purchase their unsold output.

What GDP Measures

We have now seen that GDP measures:

- total income
- total output
- total expenditure
- the sum of value-added at all stages in the production of final goods
GNP vs. GDP

Gross National Product (GNP):
- Total income earned by the nation’s factors of production, regardless of where located.

Gross Domestic Product (GDP):
- Total income earned by domestically-located factors of production, regardless of nationality.

\[(\text{GNP} - \text{GDP}) = (\text{factor payments from abroad}) - (\text{factor payments to abroad})\]

Discussion question:

In your country, which would you want to be bigger, GDP, or GNP? Why?

Real vs. Nominal GDP

GDP is the value of all final goods and services produced.
- **Nominal GDP** measures these values using current prices.
- **Real GDP** measures these values using the prices of a base year.

Classroom Problem

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P Q</td>
<td>P Q</td>
<td>P Q</td>
</tr>
<tr>
<td>Good A</td>
<td>$30</td>
<td>900</td>
<td>$31</td>
</tr>
<tr>
<td>Good B</td>
<td>$100</td>
<td>192</td>
<td>$102</td>
</tr>
</tbody>
</table>

Answers to Classroom Problem

nominal GDP: multiply P & Qs from same year
- 2006: $46,200 = $30 \times 900 + $100 \times 192
- 2007: $51,400
- 2008: $58,300

real GDP: multiply each year’s Qs by 2006 P
- 2006: $46,200
- 2007: $50,000
- 2008: $52,000 = $30 \times 1050 + $100 \times 205
Real GDP Controls for Inflation

- Changes in nominal GDP can be due to:
 - changes in prices.
 - changes in quantities of output produced.
- Changes in real GDP can only be due to changes in quantities, because real GDP is constructed using constant base-year prices.

Changes in nominal GDP can be due to:
- changes in prices.
- changes in quantities of output produced.

Changes in real GDP can only be due to changes in quantities, because real GDP is constructed using constant base-year prices.

GDP Deflator

The inflation rate is the percentage increase in the overall level of prices. One measure of the price level is the **GDP deflator**, defined as:

\[
\text{GDP deflator} = 100 \times \frac{\text{Nominal GDP}}{\text{Real GDP}}
\]

Classroom Problem

<table>
<thead>
<tr>
<th>Year</th>
<th>Nom. GDP</th>
<th>Real GDP</th>
<th>GDP deflator</th>
<th>Inflation rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>$46,200</td>
<td>$46,200</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>$51,400</td>
<td>$50,000</td>
<td>102.8</td>
<td>2.8%</td>
</tr>
<tr>
<td>2008</td>
<td>$58,300</td>
<td>$52,000</td>
<td>112.1</td>
<td>9.1%</td>
</tr>
</tbody>
</table>

Answers to Classroom Problem

<table>
<thead>
<tr>
<th>Year</th>
<th>Nominal GDP</th>
<th>Real GDP</th>
<th>GDP deflator</th>
<th>Inflation rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>$46,200</td>
<td>$46,200</td>
<td>100.0</td>
<td>n.a.</td>
</tr>
<tr>
<td>2007</td>
<td>$51,400</td>
<td>$50,000</td>
<td>102.8</td>
<td>2.8%</td>
</tr>
<tr>
<td>2008</td>
<td>$58,300</td>
<td>$52,000</td>
<td>112.1</td>
<td>9.1%</td>
</tr>
</tbody>
</table>

Understanding the GDP deflator

Example with 3 goods

For good \(i = 1, 2, 3 \)
- \(P_i \) = the market price of good \(i \) in month \(t \)
- \(Q_i \) = the quantity of good \(i \) produced in month \(t \)
- \(NGDP_i \) = Nominal GDP in month \(t \)
- \(RGDP_i \) = Real GDP in month \(t \)
Understanding the GDP deflator

The GDP deflator is a weighted average of prices. The weight on each price reflects that good’s relative importance in GDP. Note that the weights change over time.

Two arithmetic tricks for working with percentage changes

EX: GDP deflator = 100 × NGDP/RGDP.

1. If NGDP rises 9% and RGDP rises 4%, then the inflation rate is approximately 5%.

2. For any variables X and Y,
 - percentage change in (X × Y) ≈ percentage change in X + percentage change in Y

Chain-Weighted Real GDP

Over time, relative prices change, so the base year should be updated periodically.

In essence, chain-weighted real GDP updates the base year every year, so it is more accurate than constant-price GDP.

Your textbook usually uses constant-price real GDP, because:

1. the two measures are highly correlated.
2. constant-price real GDP is easier to compute.

Consumer Price Index (CPI)

A measure of the overall level of prices

Published by the Bureau of Labor Statistics (BLS)

Uses:

1. tracks changes in the typical household’s cost of living
2. adjusts many contracts for inflation (“COLAs”)
3. allows comparisons of dollar amounts over time

How the BLS Constructs the CPI

1. Survey consumers to determine composition of the typical consumer’s “basket” of goods.
2. Every month, collect data on prices of all items in the basket, compute cost of basket
3. CPI in any month equals

\[
\frac{\text{Cost of basket in that month}}{\text{Cost of basket in base period}} \times 100
\]
Basket contains 20 pizzas and 10 compact discs.

For each year, compute:
1. the cost of the basket
2. the CPI (use 2002 as the base year)
3. the inflation rate from the preceding year

<table>
<thead>
<tr>
<th>Year</th>
<th>Cost of basket</th>
<th>CPI</th>
<th>Inflation rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>$350</td>
<td>100.0</td>
<td>n.a.</td>
</tr>
<tr>
<td>2003</td>
<td>370</td>
<td>105.7</td>
<td>5.7%</td>
</tr>
<tr>
<td>2004</td>
<td>400</td>
<td>114.3</td>
<td>5.1%</td>
</tr>
<tr>
<td>2005</td>
<td>410</td>
<td>117.1</td>
<td>2.5%</td>
</tr>
</tbody>
</table>

The CPI is a weighted average of prices.

The weight on each price reflects that good’s relative importance in the CPI’s basket.

Note that the weights remain fixed over time.

Substitution bias

The CPI uses fixed weights, so it cannot reflect consumers’ ability to substitute toward goods whose relative prices have fallen.

Example: If the price of gasoline increases, then consumers may substitute toward public transportation.

This would mean the weight on gasoline is too high, while the weight on public transportation is too low.
Reasons why the CPI may overstate inflation

Introduction of new goods
- The introduction of new goods makes consumers better off and, in effect, increases the real value of the dollar.
- But it does not reduce the CPI, because the CPI uses fixed weights.

Unmeasured changes in quality
- Quality improvements increase the value of the dollar, but are often not fully measured.
- Example: The cost of a standard personal computer has increased slightly over the past 10 years, but the quality of the computer has increased.

The Size of the CPI’s Bias

In 1995, a Senate-appointed panel of experts estimated that the CPI overstates inflation by about 1.1% per year.
- So the BLS made adjustments to reduce the bias.
- Now, the CPI’s bias is probably under 1% per year.

Discussion questions:
- If your grandmother receives Social Security, how is she affected by the CPI’s bias?
- Where does the government get the money to pay COLAs to Social Security recipients?
- If you pay income and Social Security taxes, how does the CPI’s bias affect you?
- Is the government giving your grandmother too much of a COLA?
- How does your grandmother’s “basket” differ from the CPI’s?

CPI vs. GDP Deflator
- prices of capital goods
 - included in GDP deflator (if produced domestically)
 - excluded from CPI
- prices of imported consumer goods
 - included in CPI
 - excluded from GDP deflator
- the basket of goods
 - CPI: fixed
 - GDP deflator: changes every year

Two measures of inflation in the U.S.
Categories of the Population

Labor force \((L = E + U) \)
- the amount of labor available for producing goods and services; all employed plus unemployed persons
- Employed \((E) \): working at a paid job
- Unemployed \((U) \): not employed but looking for a job
- Not in the labor force \((NILF = POP – L) \): not employed, not looking for work

Two Important Labor Force Concepts

- Unemployment rate
 - percentage of the labor force that is unemployed
- Labor force participation rate
 - the fraction of the adult population that “participates” in the labor force

Classroom Problem:

Compute labor force statistics

U.S. adult population by group, June 2007
- Number employed = 146.1 million
- Number unemployed = 6.9 million
- Adult population = 231.7 million

Use the above data to calculate
- the labor force
- the number of people not in the labor force
- the labor force participation rate
- the unemployment rate

Answers to Classroom Exercise

- data: \(E = 146.1, \; U = 6.9, \; POP = 231.7 \)
- labor force
 \[L = E + U = 146.1 + 6.9 = 153.0 \]
- not in labor force
 \[NILF = POP – L = 231.7 – 153 = 78.7 \]
- unemployment rate
 \[\frac{U}{L} \times 100\% = \frac{6.9}{153} \times 100\% = 4.5\% \]
- labor force participation rate
 \[\frac{L}{POP} \times 100\% = \frac{153}{231.7} \times 100\% = 66.0\% \]

Compute percentage changes in labor force statistics

- Suppose
 - population increases by 1%
 - labor force increases by 3%
 - number of unemployed persons increases by 2%
- Compute the percentage changes in
 - the labor force participation rate: 2%
 - the unemployment rate: –1%

The Establishment Survey

The BLS obtains a second measure of employment by surveying businesses, asking how many workers are on their payrolls.

Neither measure is perfect, and they occasionally diverge due to:
- treatment of self-employed persons
- new firms not counted in establishment survey
- technical issues involving population inferences from sample data
CHAPTER 2: The Data of Macroeconomics

1. Gross Domestic Product (GDP) measures both total income and total expenditure on the economy’s output of goods & services.

2. Nominal GDP values output at current prices; real GDP values output at constant prices. Changes in output affect both measures, but changes in prices only affect nominal GDP.

3. GDP is the sum of consumption, investment, government purchases, and net exports.

4. The overall level of prices can be measured by either
 - the Consumer Price Index (CPI), the price of a fixed basket of goods purchased by the typical consumer, or
 - the GDP deflator, the ratio of nominal to real GDP

5. The unemployment rate is the fraction of the labor force that is not employed.

Chapter Summary