
Chapter 2

Infinite-Horizon and
Overlapping-Generations

Models

This chapter uses the same assumptions as the Solow Growth model, with

one key difference: the savings rate is endogenously determined by utility-

maximizing consumers. Therefore, the evolution of the capital stock is deter-

mined in a general equilibrium model with households maximizing lifetime

utility and perfectly-competitive firms maximizing profits. In the Solow

Growth Model, the supply of capital stock is essentially fixed because the

savings rate is exogenous and constant. Here, households supply capital to

firms in order to maximize utility. Changes in the model’s parameters (pop-

ulation growth rate, depreciation rate, production function, etc.) affect both

the supply and demand of capital. There are some key terms one should be

familiar with when reading this chapter:

• Euler equation (AKA Euler condition). A first-order condition that
demonstrates a tradeoff of a variable across time or states of the world.

In macroeconomics, the most common Euler equations will show the

tradeoff between consumption today and consumption in the future.

• Pareto efficiency. In the discussion of this model, one will often

see reference to a concept of Pareto efficiency. A Pareto improvement

refers to moving to a different outcome such that one individual is

better off without making anyone else worse off. Pareto efficiency

means that no further Pareto improvements are possible. This is a
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formal way of defining efficiency used by economists. Less formally,

Pareto efficiency means there is no waste.

• Representative household (AKA representative consumer). This

refers to a household used to formalize the utility choices of consumers.

Of course, all individuals make their own choices, but in modeling their

behavior as a group, it is useful to simplify things to assume that all

households are the same, with their decisions being represented by

the representative household. Macroeconomic models involve making

abstract choices about generic baskets of goods (e.g., consumption), so

we’re assuming that individual differences about consumption are at

least similar across households. It isn’t that macroeconomists believe

that households don’t have different utility functions when it comes

to consumption bundles, it is more that they believe these differences

are not critical to outcomes.

• Representative firm. Like the representative household, this repre-
sentative firm is designed to represent the profit-maximizing choices

of all firms. This is far less controversial than using a representative

household — firms clearly have the same objective whereas households

may be irrational with their objectives not clearly defined.

• Social planner. The social planner is the one who insures that the
economy reaches Pareto efficient outcomes. In a perfectly competitive

world, the market outcomes are usually Pareto efficient (e.g., the same

ones the social planner would choose). Discussions of the social plan-

ner arise when discussing the concept of social welfare where market

outcomes are not Pareto efficient.

• Social welfare. Social welfare refers to the collective benefits to

households and firms. A more familiar name for this is total surplus

(consumer surplus + producer surplus).

Part B The Diamond Model
The Diamond model is an overlapping-generations (OLG) model defined

in discrete time. The Solow Growth model and the Ramsey-Cass-Koopmans

model (from Part A) are cast in continuous time with households and firms

who “live” forever. The Diamond model assumes that in each period, there

are households entering the workforce and households exiting (e.g., retire-

ment). This approach to modeling has some drawbacks. Most important
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is the difficulty in evaluating social welfare in OLG models. The model

implies that the choice of time period matters (e.g., whether a household is

working or retired)

2.1 Assumptions

• Discrete time, two-period model. The households live for two periods:
(1) working and (2) retirement. After retirement, the household dies.

• Population growth rate. Population grows at rate n : Lt = (1+n)Lt−1.
This implies that in any period t there are Lt individuals born (work-

ing) and Lt−1 individuals in retirement.

• Labor supply and lifetime income. Each household supplies one unit
of labor in period (1), earning income = Atwt × 1. The worker earns
the real wage wt and the benefit of labor-augmenting technological

progress, At, from the one unit of labor supplied. The lifetime income
is divided between the two periods of life to pay for consumption in

each period.

• Savings. The household spends a portion of lifetime income in period
(1) on consumption , C1t. The remainder (Atwt − C1t) is saved to
pay for consumption in period (2) , C2t+1. The savings earn interest
(1 + rt+1) on each unit of output saved. Since households die at the
end of period (2), C2t+1 = (1 + rt+1)(Atwt −C1t).

• Lifetime utility. Households choose consumption each period, C1t and
C2t+1, to maximize lifetime utility:

Ut = U

µ
C1t,

1

1 + ρ
C2t+1

¶
with ρ > 0. The term 1

1+ρ is known as the discount factor. This is a

common way to model lifetime consumption choices. All else equal,

households value consumption tomorrow relatively less than consump-

tion today. Mathematically, this assumption is necessary to make

the model tractable. For example, if households valued consumption

equally in each period, we would have no way to identify how much

they will consume in each period. Romer assumes the constant relative

risk aversion (CRRA) utility function:

Ut =
C1−θ1t

1− θ
+

1

1 + ρ

C1−θ2t+1

1− θ

22



with θ > 0. The CRRA utility function has properties that are appeal-
ing to researchers in macroeconomics and finance. Specifically, this

utility function assumes that the coefficient of relative risk aversion is

equal to θ and therefore it is independent of the households consump-
tion choices. In other words, no matter how much or how little the

household consumes, its aversion to risk is the same. This property is

necessary for the model to generate a balanced growth path. It can

be shown that as θ → 0, the CRRA utility function approaches a log
utility function:

Ut = log(C1t) +
1

1 + ρ
log(C2t+1)

• Production. Firms choose capital Kt and labor Lt to maximize profits

according to the following production function:

Y = F (Kt, AtLt)

The profit maximizing problem yields the following:

rt = f 0(kt)
wt =

£
f(kt)− ktf

0(kt)
¤

Note, in Romer, the variables kt, yt, ct, etc. are defined in units of
effective labor Jones defines these use the tilde: ek, ey, and so on. This
guide will use the Romer notation to maintain consistency with the

chapter. Note that the worker earns wt for each unit of labor Lt

supplied. Each effective worker earns Atwt for each unit.

• Technological progress. Technology grows at rate g : At = (1+g)At−1.

2.2 Household Behavior

The household’s lifetime budget constraint is given by:

C1t +
1

1 + rt+1
C2t+1 = Atwt

The household’s lifetime income must therefore be equal to the household’s

present value of lifetime consumption. Period (2) consumption, C2t+1 is
“discounted” to the present.
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The household’s maximization problem can be expressed as:

L =
C1−θ1t

1− θ
+

1

1 + ρ

C1−θ2t+1

1− θ
+ λt

µ
Atwt −C1t − 1

1 + rt+1
C2t+1

¶
This yields the following first-order conditions:

C1t : C−θ1t − λt = 0

C2t+1 :
1

1 + ρ
C−θ2t+1 − λt

1

1 + rt+1
= 0

Combining and rewriting, we find the following Euler equation:

C−θ1t =
1 + rt+1
1 + ρ

C−θ2t+1

The term on the left is the marginal utility of consumption today. The term

on the right is the marginal utility of consumption tomorrow, discounted to

the present. We can substitute out for C2t+1 (using the definition given
above) to solve for C1t in terms of the parameters and lifetime income:

C1t =
(1 + ρ)

1
θ

(1 + ρ)
1
θ + (1 + rt+1)

1−θ
θ| {z }

savings rate s(rt+1)

Atwt

The utility-maximizing household defines the savings rate as a function

of the discount rate and the interest rate. The savings rate is increasing in

rt+1 - an increase in the interest rate causes households to save more, and
therefore increase second-period consumption. Using the lifetime budget

constraint and the solution for period (1) consumption above, we can solve

for C2t+1 :
C2t+1 = (1 + rt+1) (1− s(rt+1))Atwt

The savings rate is:

s(rt+1) =
(1 + ρ)

1
θ

(1 + ρ)
1
θ + (1 + rt+1)

1−θ
θ

The size of the parameter θ has important implications for how households
respond to changes in the interest rate. This is because the parameter

θ measures the household’s willingness to substitute consumption across
time. When making a choice about consumption today versus tomorrow

(e.g., consuming versus saving today), one must consider the substitution

and income effects. Suppose that the interest rate increases - what is the

effect on savings?
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• Substitution effect. The higher interest rate means that C1t is rel-
atively more expensive than C2t+1, causing households to substitute
toward future consumption. The result is an increase in savings.

• Income effect. The increase in the interest rate implies the household’s
earnings from capital investment are higher, increasing the lifetime

earnings available for consumption. This should cause the household

to save less of its income, increasing C1t.

It can be shown that when θ < 1, the substitution effect dominates.

That is, the benefits of an increase in the interest rate cause the household

to save more and consume less today. When θ > 1, the income effect
dominates. In this case, the households will respond to an increase in the

interest rate by consuming more today. To demonstrate this mathematically,

differentiate the savings function with respect to r. The sign of the derivative
depends on the value of θ.

2.2.1 Special case: Log Utility θ = 1

The following sections, Romer makes use of the log utility function to solve

for the balanced growth path. Here, we derive the savings rate under these

assumptions. To solve for the log utility case, the household’s consumption

choice is defined by the following Lagrangian:

L = log(C1t) +
1

1 + ρ
log(C2t+1) + λt

µ
Atwt −C1t − 1

1 + rt+1
C2t+1

¶
The Euler equation is found by combining the first-order conditions:

1

C1t
=
1+ rt+1
1 + ρ

1

C2t+1

Rewriting this expression and substituting out for C2t+1 :

C1t =
1 + ρ

2 + ρ
Atwt

Therefore, the savings rate is independent of the interest rate in this case.

The savings rate, s = 1
2+ρ . When θ = 1 the substitution and income ef-

fects associated with a change in the interest rate are offset by one another,

making the savings rate independent of the interest rate.

25



2.3 The Dynamics of the Economy

The law of motion for the capital stock is defined by how much households

save. In per effective worker terms, the law of motion is:

kt+1 =
1

(1 + n) (1 + g)
s(rt+1)wt

Note, wt = f(kt)−ktf 0(k) is functions of the amount of capital per effective
worker purchased today t. The savings rate is a function of rt+1 = f 0(k),
which is a function of the capital stock next period, t+1. We can therefore
express the capital stock next period in terms of the model parameters and

the capital stock today kt :

kt+1 =
1

(1 + n) (1 + g)
s(f 0(k))

£
f(kt)− ktf

0(k)
¤

Like the Solow model, the balanced growth path occurs when the capital

stock per effective worker is not changing. That is, when kt+1 = kt, so that
∆k = 0. We cannot go further with the expression above. While the model
does have an implicit solution from the expression above, it does not have a

closed-form solution. We are able to show that the capital stock will converge

to a steady state value, but we cannot solve for this value explicitly.

2.3.1 Logarithmic Utility and Cobb-Douglas Production

However, if we assume a Cobb-Douglas production function and log utility,

we can solve for the steady state level of capital per effective worker. From

above, the savings rate is constant in the log utility case:

s =
1

2 + ρ

The real wage rate per effective worker is:

Atwt = (1− α)kαt

Therefore, the law of motion for the capital stock is:

kt+1 =
1

(1 + n) (1 + g)

1

2 + ρ
(1− α)kαt

Since the Diamond model is a two-period model, it doesn’t have a di-

agram analogous to the Solow Growth Model. We can use the expression

above to see how a change in the model parameters affect outcomes. The

underlying dynamics and convergence to steady state is similar to Solow.

Consider the following:
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• Increase in population growth rate n :

kt+1 >
1

(1 + n) (1 + g)

1

2 + ρ
(1−α)kαt =⇒ ∆k > 0⇒ k ↑ until kt+1 = kt = k∗new

• Increase in savings rate (decrease in ρ) :

kt+1 <
1

(1 + n) (1 + g)

1

2 + ρ
(1−α)kαt =⇒ ∆k < 0⇒ k ↓ until kt+1 = kt = k∗new

We maintain the same basic implications as the Solow Growth model.

The fundamental difference in the Diamond model is that the savings

rate is determined by households maximizing utility. The key impli-

cations for economic growth are identical:

• The growth rates of key variables are identical. Specifically, per capita
output grows at rate g.

• Changes to the model parameters (besides g) lead to changes in steady
state, but do not lead to changes in the growth rate of variables in per

capita terms. In other wards, a change in the savings rate affects per

capita income, but does not affect its growth rate.

2.3.2 The Speed of Convergence

At steady state, kt+1 = kt = k∗ :

k∗ =
1

(1 + n) (1 + g)

1

2 + ρ
(1− α)k∗α

k∗ =

∙
(1− α)

(1 + n) (1 + g) (2 + ρ)

¸ 1
1−α

Solving for y∗ :

y∗ =
∙

(1− α)

(1 + n) (1 + g) (2 + ρ)

¸ α
1−α

The speed of convergence to steady state depends on capital share of output

α. If there is a change in the model’s parameters, capital per effective worker
gets (1 − α) of the way to the new steady state value each period. This

makes sense because the transition to a new steady state is based on the

accumulation/decumulation of capital per effective worker. If α is low, it
will take relatively longer for this process to occur.

For a given value of α, the economy will converge to steady state more
quickly in the Diamond model vs. the Solow model.
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2.3.3 General Case

In the general case (CRRA utility and a generic production function f(k)),
Romer shows that a wide variety of outcomes are possible. That is, the

steady state in the model can lead to situations where k∗ is unstable in
the sense that there are multiple equilibria possible, or that k collapse to
zero or explodes (continually grows). The possibility shown in Panel (d)

of the textbook is an interesting one that is becoming more popular in re-

search. The existence of multiple equilibria suggests that the actual outcome

is arbitrary (among the multiple outcomes that are consistent with utility

maximization). This means it is possible for a sudden change in expectations

affect actual outcomes.

2.4 The Possibility of Dynamic Inefficiency

OLG models are difficult to evaluate in terms of social welfare because the

time period matters. In other words, if a portion of the households are

working and another portion is retired, they have different utility functions.

For this reason, there is no guarantee that the Diamond model’s equilib-

rium is Pareto efficient. Romer shows this in the log utility/Cobb-Douglas

production case. Ideally, the social planner can reallocate consumption to

make sure that the highest social welfare (utility shared by all households

combined) is as high as possible. Unfortunately, it is not possible to shift

consumption from the retired to the working (and vice versa) because these

consumption bundles are treated as different goods for modeling purposes.

The timing of the model creates the possibility of efficiency, known as dy-

namic inefficiency.

The Diamond model shows that an economy’s equilibrium may be dy-

namically inefficient. So, do economies from dynamic inefficiency? One way

to test this is to compare the return on capital (measured by the real interest

rate on short-term government debt) and the growth rate of the economy.

The golden rule capital stock occurs when the marginal product of capital

per effective worker (adjusted for depreciation) is equal to the sum of the

growth rates of population and technological progress:

kGR =⇒ f 0(k∗)− δ = n+ g

One difficulty in this simple test is that investment in capital is not risk-free

(as assumed in the model). Adjusting for risk and depreciation, it appears

that the G-7 countries are dynamically efficient.
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2.5 Government in the Diamond Model

The Diamond model is a natural model to use for looking at the implica-

tions of government tax/savings policy. Allowing for two different types of

households allows us to understand the differential effects of such policies.

For simplicity, Romer focuses on the log utility case where the savings rate

is constant.

Suppose the government introduces a program that makes savings com-

pulsory for households. The government collects a lump-sum tax G from

households when they are working in period (1) and returns the funds to

these households (plus interest) G(1+ rt+1) when they are retired in period
(2). Consider how this affects the lifetime budget constraint. Starting with

the definition of second-period consumption, we observe that a portion G
is deducted from savings because of the lump-sum tax, but (1 + rt+1)G is

available for the retired household to consume:

C2t+1 = (1 + rt+1)(Atwt −C1t −G) + (1 + rt+1)G

C1t +
1

1 + rt+1
C2t+1 = Atwt

Notice that this collapses to the same lifetime budget constraint in the

model above. This makes sense because the households are going to save

the same fraction of their before- and after-tax income. The level of private

savings will be lower because the government is taking a portion of the

household’s savings as part of the mandatory program. If the government

does not invest these funds into the economy’s capital stock, then the steady

state capital stock per effective worker will be lower. Permanent changes in

the lump-sum tax G will affect the steady state, but do not affect the growth
rate of per capita income. Temporary changes in G will not affect outcomes
because households know the value will return to its initial level and will

consume and save based on the long-run value of G.
It is important to note that this is not the Social Security System in the

United States. Instead of each generation financing its own retirement, the

working generation pays for it with taxes. This suggests that the amount

collected by the retired households depends not only on the interest rate,

but on the population growth rate.
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