Chapter 8: Stimulus Control

#### Stimulus Control

- Generalization & discrimination
- Peak shift effect
- Multiple schedules & behavioral contrast
- Fading & errorless discrimination learning
- Stimulus control: Applications for the study of memory

### Stimulus Control

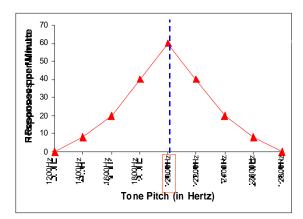
•

- Stimulus control
  - Presence of the
  - Does not

#### Examples

- -2000 Hz Tone : Lever Press → Food
- *Hotel* : Smoking Urge → Smoking

#### Generalization & Discrimination


- **Stimulus Generalization** is the tendency for an operant response
  - Example: If you have learned to beg for candy in a grocery store, you might also do it in a convenience store
  - More similar the stimulus to the S<sup>D</sup>
    - Rat is rewarded with food for lever pressing in the presence of a 2000Hz tone. More likely press the lever in presence of 1800 Hz tone than 1000 Hz tone

# Generalization & Discrimination

- Stimulus Discrimination is the
  - Opposite of generalization

# Stimulus Generalization

- Generalization gradient
  - Depiction of strength of responding in the presence of stimuli similar to the  $S^D$

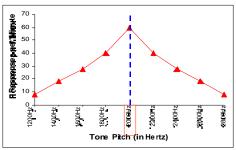


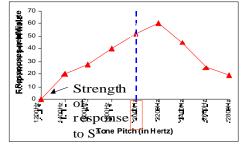
- Steeper gradients =
- Shallow gradients =

# **Discrimination Training**

- While the discriminitive stimulus signals that reinforcement is available, other stimuli become signals that reinforcement will NOT be available.
- These other stimuli are called "discriminitive stimuli for extinction"

# Discrimination Training


- Discrimination training (operant procedures)
  - When responding is NOT reinforced in the presence of certain stimuli those stimuli become *discriminative* stimuli for extinction (symbol =  $S^{\Delta}$ )


#### Example

2000 Hz Tone (S<sup>D</sup>): Lever Press (R)  $\rightarrow$  Food (S<sup>R</sup>) 1200 Hz Tone (S<sup>D</sup>): Lever Press (R)  $\rightarrow$  No Food (-)

### Peak Shift Effect

- <u>Peak Shift Effect</u> -Following discrimination training,
  - Originally trained to press for 2000 Hz tone.
  - See generalization gradient.
  - Then train for 2000 Hz tone and NOT for 1200 Hz tone.
  - See new generalization gradient.
  - Peak responding to 2200 Hz, which has never been trained.





#### Peak Shift cont.

- Explanations
  - Responding occurs to relative (rather than absolute)
     values of stimuli (e.g., higher pitched tones indicate food; lower pitched tones indicate no food)
  - $S^D$  is more similar to  $S^\Delta$  than 2200Hz tone and has acquired its inhibitory properties

# Multiple Schedules

- Multiple schedules & behavioral contrast
  - Multiple schedules -
  - Differ from chained schedules (reinforcer is delivered after each component)

```
FI 30-sec VI 30-sec

Red Key: Key Peck \rightarrow Food / Green Key: Key Peck \rightarrow Food

S<sup>D</sup>

R

S<sup>R</sup>

S<sup>D</sup>

R

S<sup>R</sup>

S<sup>R</sup>
```

# Multiple Schedules

Multiple schedules & behavioral contrast continued

```
FI 30-sec VI 30-sec

Red Key: Key Peck \rightarrow Food / Green Key: Key Peck \rightarrow Food

Food

SD

R

SR

SR

SR

SR

SR
```

 Can demonstrate stimulus control if responding varies with S<sup>D</sup> reinforcement schedule

\_

# Behavioral Contrast-negative

- Behavioral contrast -
- *Negative contrast* increase in rate of *reinforcement* on one component produces

VI 60-sec VI 60-sec

Red Key:  $Key Peck \rightarrow Food / Green Key: Key Peck \rightarrow Food$ 

- Same schedule so equal responding on both parts
- Change reinforcement associated with red key (twice as much)

\*VI 30-sec\*

VI 60-sec

Red Key:  $Key Peck \rightarrow Food / Green Key: Key Peck \rightarrow Food$ 

- Despite the Green condition remaining the same,

# Behavioral Contrast-positive

• *Positive contrast* - decrease in rate of *reinforcement* on one component produces

VI 60-sec VI 60-sec

Red Key:  $Key Peck \rightarrow Food / Green Key: Key Peck \rightarrow Food$ 

- Change reinforcement associated with red key (half as much)

\*VI 120-sec\* VI 60-sec

Red Key:  $Key Peck \rightarrow Food / Green Key: Key Peck \rightarrow Food$ 

- Despite the Green Key remaining the same,
- Similar effects are observed when the magnitude of the reinforcer is changed

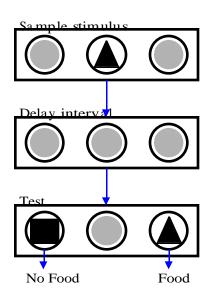
### Limitations

- Limitations of discrimination training
  - When discriminating  $S^D$  from  $S^\Delta P$  will make mistakes
  - Can result in frustration, emotional behavior etc.
- Fading & errorless discrimination learning
  - Can reduced number of errors to  $S^{\Delta}$  if:
    - 1.
    - 2.

#### Limitations Cont.

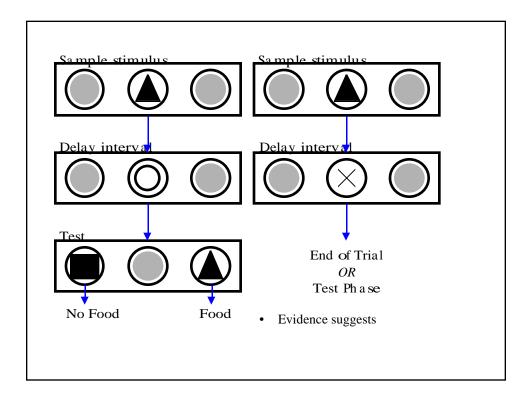
#### Example

Pigeons trained to peck at red key (VI 60-sec), once behavior established 5 sec extinction intervals implemented (light key switched off). Pigeons don't peck at dark keys so it's easy to establish as  $S^{\Delta}$ . Reinforcement and extinction sessions gradually increased to 3-mins each. Dark key then gradually illuminated with green tinge. Almost no errors made to  $S^{\Delta}$  relative to control group


# Limitations of errorless discrimination training

- Marsh & Johnson (1968)
  - Pigeons trained to discriminate between red and blue keys using errorless discrimination procedure
  - Other pigeons trained to discriminate using standard discrimination procedures
  - Once discrimination learning had taken place the  $S^D$  and  $S^\Delta$  were reversed
  - Pigeons that learned to discriminate using standard procedures had
  - Pigeons that learned to discriminate using errorless procedures had
  - Standard task adverse side effects in original learning but task produces greater flexibility if material requires subsequent modification

## Memory


- Stimulus control: The study of memory
  - Can assess the effect of stimulus control on memory in humans by asking questions that require verbal response (e.g., multiple choice exams)
    - Correct response = S<sup>D</sup>
    - Incorrect response =  $S^{\Delta}$
  - Animals do not have verbal ability so need alternative techniques to study memory
  - Delayed-matching-to-sample
    - Animal is shown sample stimulus and following a delay it is required to select it from a group of alternatives
    - If correct stimulus is selected the animal is thought to have remembered it

- 1. Sample stimulus is presented (pigeon must peck at it to ensure that it is noticed)
- 2. Delay interval administered
- 3. At test, pigeons must remember which key was previously illuminated to receive food reward
- Can be used to test memory processes by altering aspects of the procedure (e.g., length of sample presentation, length of delay period etc.)



# Memory cont.

- Directed forgetting
  - Is memory poorer for material that you have been told to forget (relative to memory for material that you have not told to forget)?
  - Matching-to-sample procedure employed
  - During delay phase pigeon is shown either:
    - O = remember the sample stimulus
    - X =forget the sample stimulus (trial will start over)
    - Following occasional X-trials test display is presented
  - Question will pigeon perform worse at test for material they have been instructed to forget (i.e., Xtrials) as opposed to information they have been instructed to remember (i.e., O-trials)



## Lecture Summary

- Behavior is under stimulus control when the presence of a discriminative stimulus (S<sup>D</sup>) affects the probability of the behavior
- Peak shift effect refers to the tendency for the peak of a generalization gradient to shift to one side of the  $S^D$  (away from the  $S^\Delta$ ) following discrimination training
- Multiple schedules consist of two or more schedules presented in sequence, each with its own S<sup>D</sup>
- Errorless discrimination training reduces side effects associated with discrimination training, but behavior acquired through this procedure is difficult to modify later
- Delayed matching-to-sample procedures can be used to study memory in animals e.g., directed forgetting