Ast 4 Lecture 12 Notes

1 Fusion in the core

Inside the core

- Temperature $\sim 1.5 \times 10^7$ K
- Hydrogen and Helium in the form of **plasma**
- Plasma: positively charged ions and free electrons
- Due to the high temperatures electrons are no longer attached to nuclei
 - Positively charged nuclei moving at high speeds
 - Like charges repel
 - The closer nuclei come together \rightarrow stronger the repulsive force
 - If the distance between nuclei < 10⁻¹⁵m, the **strong nuclear force** overpowers the electromagnetic repulsion
 - temperature and pressure in core allow fusion of hydrogen nuclei

2 Proton-proton chain

2.1 Step 1

Step 1

- Two protons fuse to form a **deuteron** releasing a **positron** and **neutrino**
- A deuteron is a nucleus of a isotope of hydrogen called *deuterium* (²H)
- A deuteron consists of a proton and a neutron
- ${}^{1}\mathrm{H} + {}^{1}\mathrm{H} \rightarrow {}^{2}\mathrm{H} + e^{+} + \nu + \mathrm{energy}$

Step 1

- A positron is the *antiparticle* of an electron
- identical to electron except has a positive charge
- when a positron and an electron meet they annihilate each other producing gamma ray photons
- $e^+ + e^- \rightarrow 2\gamma$

2.2 Step 2

Step 2

- A proton interacts and fuses with a deuteron producing a helium-3 (³He) nucleus
- Energy is emitted in the form of a gammaray photon
- ${}^{1}\text{H} + {}^{2}\text{H} \rightarrow {}^{3}\text{He} + \gamma + \text{energy}$

2.3 Step 3

Step 3

- Final step is the production of helium-4 nuclei
- two helium-3 nuclei fuse to form one helium-4 nucleus plus two protons
- ${}^{3}\text{He} + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + {}^{1}\text{H} + {}^{1}\text{H} + \text{energy}$

2.4 Total Reaction

Total reaction

- $4^{1}\text{H} \rightarrow {}^{4}\text{He} + 2e^{+} + 2\nu + 2\gamma + \text{energy}$
- Where did the energy come from?

2.5 Energy

Energy and Mass

- Mass of a proton is 1.6726×10^{-27} kg
- The mass of 4 protons is 6.6904×10^{-27} kg
- However the mass of a ⁴He nucleus is 6.6447×10^{-27} kg
- Mass of ⁴He mass of 4 protons = -4.57×10^{-29} kg
- Where did the mass go?

Einstein's famous equation

$$E = mc^2$$

or

energy = mass \times (speed of light)²

The missing mass was converted into energy

- mass of ⁴He mass of 4 protons = -4.57×10^{-29} kg which is about 0.7% of the original mass
- Using $E = mc^2$ we can calculate the energy produced during the proton-proton chain

$$E = mc^{2}$$

= (4.57 × 10⁻²⁹ kg)(3 × 10⁸ m/s)²
= 4.11 × 10⁻¹² kg m/s
= 4.11 × 10⁻¹² J

Fusion of 6.69×10^{-27} kg of hydrogen produces 4.11×10^{-12} J of energy

3 interior

3.1 Hydrostatic Equilibrium

Hydrostatic equilibrium

- Hydrostatic Equilibrium: outward pressure balances inward pull of gravity
- Sun is massive \rightarrow gravitational pull is very strong \rightarrow very high internal pressure needed
- High pressure requires very high central temperature

Hydrostatic equilibrium

Hydrostatic equilibrium keeps the fusion process at a constant rate (like a thermostat)

Scenario 1:

- If the fusion process where to speed up \rightarrow more energy would be produced and pressure would increase
- This added pressure would cause the core to expand and cool, and the fusion rate would slow down to normal

Hydrostatic equilibrium

Hydrostatic equilibrium keeps the fusion process at a constant rate (like a thermostat)

Scenario 2:

- If the core temperature were to drop \rightarrow decrease in fusion rate
- The pressure would decrease and the core would contract
- As the core shrank \rightarrow temperature would increase \rightarrow fusion rate would return to normal

Hydrostatic equilibrium

- Energy produced by fusion travels toward the surface at a steady rate
- The amount of energy leaving the top of a gas layer is equal to the energy entering the bottom