Formulas for Finance Math

\(m \) = the number of compounding periods per year.
(annually \(m = 1 \), semiannually \(m = 2 \), quarterly \(m = 4 \), monthly \(m = 12 \), daily \(m = 365 \))

\(r \) = the annual interest rate as a decimal. (12\% = 0.12)

\(t \) = the time in years. (6 months = 0.5 years)

Simple Interest
\(P = \) principal

Simple Interest

\[I = Prt \]

Future Value

\[A = P + Prt \]

Present Value

\[P = \frac{A}{(1 + rt)} \]

Compound Interest
\(P = \) principal

Future Value

\[A = P \left(1 + \frac{r}{m}\right)^{mt} \]

Present Value

\[P = \frac{A}{\left(1 + \frac{r}{m}\right)^{mt}} \]

Continuous Compounding

\(e = 2.71828 \)

\[A = Pe^{rt} \quad P = Ae^{-rt} \]

Future Value: Annuities and Sinking Funds
\(FV = \) future value=S, \(PMT = \) payment=R

\[FV = PMT \left[\frac{\left(1 + \frac{r}{m}\right)^{mt} - 1} {\left(1 + \frac{r}{m}\right)^{mt} - 1} \right] \]

\[PMT = FV \left[\frac{\left(\frac{r}{m}\right)^{mt}} {\left(1 + \frac{r}{m}\right)^{mt} - 1} \right] \]

Present Value: Annuities and Amortization
\(PV = \) present value=P, \(PMT = \) payment=R

\[PV = PMT \left[\frac{1 - \left(1 + \frac{r}{m}\right)^{-mt}} {\left(1 + \frac{r}{m}\right)^{-mt}} \right] \]

\[PMT = PV \left[\frac{\left(\frac{r}{m}\right)^{-mt}} {1 - \left(1 + \frac{r}{m}\right)^{-mt}} \right] \]