Introduction
Some classes at CSUS require that you pass a mathematics diagnostic test in order to remain enrolled in the class. The diagnostic test determines if you have the basic math skills necessary to be successful in that class. This study guide has been developed to help you review for the particular test you need to take.

There are 3 diagnostic test study guides in this booklet. The Intermediate Algebra Test (IAD) assumes you can easily do the math in the Elementary Algebra (with Geometry) Diagnostic Test (EGAD), and the Calculus Readiness Diagnostic Test (CR) assumes you can easily do the math in both the EGAD and IAD Tests. So, you should review the material in the sample diagnostic test(s) before the one you need to pass for your class.

<table>
<thead>
<tr>
<th>To stay in this Math Class:</th>
<th>Take this Diagnostic Test:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 9, 11</td>
<td>IAD</td>
</tr>
<tr>
<td>Math 17, Math 24, Math 26A, Math 29, Math 107A, Statistics 1</td>
<td>IAD</td>
</tr>
<tr>
<td>Math 30</td>
<td>CR</td>
</tr>
</tbody>
</table>
Elementary Algebra (with Geometry) Diagnostic Test (EGAD)

The following is a list of Elementary Algebra topics covered on the EGAD. After that is an EGAD Sample Test with Answers. If you find a section of the sample test questions difficult, use the topics list to help you find a similar section in an Elementary Algebra textbook. Then read and study the textbook until you understand how to do those problems.

This is also a good Sample Test to take when preparing for the IAD!

Study Guide: Elementary Algebra Diagnostic Test

Topic I – Arithmetic Operations

Arithmetic operations with fractions and decimals
Integral exponents and square roots of perfect squares
Conversion between fractions and decimals
Ordering of rational numbers
Percentages
Estimation and approximation

Topic II – Polynomials

Simplification and evaluation of polynomials
Basic operations with polynomials
Special products
Factoring—monomial factors, trinomials, and special products

Topic III – Linear Equations and Inequalities

Solving linear equations with numerical and literal coefficients
Solving equations reducible to linear equations
Solving linear inequalities
Solving two linear equations by elimination and substitution

Topic IV – Quadratic Equations

Solution of quadratic equations by factoring

Topic V – Graphing

Graphing points on the number line and in the coordinate plane
Graphs of linear inequalities
Inequalities in one unknown
Graphs of simple linear equations
Slope of a line
Topic VI – Rational Expressions

Simplification of rational expressions
Addition and Subtraction of rational expressions
Multiplication and Division of rational expressions
Complex rational expressions

Topic VII – Exponents and Square Roots

Exponentiation with integral exponents
Simplification, addition, subtraction, multiplication, and division of square roots
Scientific notation

Topic VIII – Geometric Measurement

Measurement formulas for perimeter, circumference, area, and volume of triangles, squares, rectangles, parallelograms, circles, cubes, rectangular solids, cylinders, and spheres
Sum of the interior angles of a triangle
Properties of isosceles triangles
Properties of similar triangles
Pythagorean Theorem

Topic IX – Word Problems

Problems involving arithmetic, percent, average, algebraic substitution, evaluation, ratio, and proportion
Problems leading to one and two linear equations
Problems from geometry
Elementary Algebra (with Geometry) Diagnostic Sample Test Questions

Topic I – Arithmetic Operations

1. Express \(\frac{7}{15} \) as a decimal rounded to the thousandths place.

2. Simplify: \(\left(\frac{5}{8} + \frac{3}{4} \right) \div 11 \)

3. \(3 - (2 - 4.17 + .003) = \)

4. Write \((2^3)^2 \cdot 2 \) as a power of 2.

Topic II – Polynomials

5. Multiply: \(5ab^2 \left(2a^2b^3 - 11a + 3 \right) \)

6. Factor completely: \(9a^2 - 25b^2 \)

7. Solve for \(x \): \((x + 6)(2x - 5) = 0 \)

8. If \(x = 2 \) and \(y = -3 \), then \(x^2y^3 - 3xy + 4x^2 = \)

9. Multiply and simplify: \((2x - 5y)^2 \)

10. Factor completely: \(3a^2 - 7a - 6 \)

11. Simplify: \((2m^2 - m + 1) - (m^2 - 3m - 1) \)
12. Multiply and simplify:
\[(w + 4)(v - 1) - 3w(v + 2)\]

13. Factor completely:
\[15a^3b^2z^6 - 9ab^3z^2 + 24a^2b^3z^3\]

Topic III – Linear Equations and Inequalities

14. Solve for \(x\):
\[\frac{2x + 7x}{7} = 5 + 2x\]

15. Solve for \(x\):
\[2x - 3a = c\]

16. Solve for \(x\):
\[\frac{5}{2x - 3} - \frac{8}{3 - 2x} = 1\]

17. Solve for \(x\) and \(y\):
\[\begin{cases}
2x = y \\
3x - 4y = 5
\end{cases}\]

18. Solve for \(x\) and \(y\):
\[\begin{cases}
2x + y = 4 \\
x - 3y = 9
\end{cases}\]

19. Solve for \(x\):
\[4 - 7x < 8\]

20. Solve for \(x\):
\[4x - 7 = 13\]

Topic IV – Quadratic Equations
21. Solve for x: \((x+5)(x-\frac{3}{2}) = 0\)

22. Solve for x: \(4x^2 + 7x = 12x\)

23. Solve for x: \(x(2x-7) = -6\)

24. Solve for x: \(x^2 - 4x + 2 = 0\)

25. Solve for x: \(x^2 + 6x = 0\)

26. Solve for x: \(x^2 - x - 12 = 0\)

27. Solve for x: \(x - 5 = -\frac{6}{x}\)

Topic V – Graphing

28. Graph the point \((-2, 3)\)

29. Express the graph shown in interval notation.

30. Graph \(3x - 2y \leq -2\) and \(y \geq 0\) on the same set of axes.

31. Find the midpoint of this line segment.

\((-2, 5)\) to \((4, -1)\)
32. What if anything can be said about the following lines:
 A. (I) is parallel to (II)
 B. (II) is parallel to (III)
 C. (I) is perpendicular to (III)
 D. (I) is perpendicular to (II)
 E. Both A and B are true
 F. Both B and D are true
 G. None of the above are true.

33. If \((a, b)\) denotes the coordinates of the point \(P\) in the graph below, then where is the point with coordinates \((a, -b)\)?

34. What is the equation of this line?

35. Graph \(y > 3x - 2\)

36. Graph \(x + 2y \leq 2\)
37. Where does $\frac{5}{13}$ graph on this number line?

38. Graph the solution set for this inequality: $-5 \leq 3x < 2$

39. Find the slope of the line passing through the points $(-2, 3)$ and $(-5, -1)$.

40. Which line is the graph of $y = -2x$?

41. If $x = 2$ and $y = -3$, then

$$\frac{xy^2 - 2x}{3x^2 - xy} =$$

42. Simplify:

$$\frac{(2x+1)(x-2)}{6x+3} =$$

43. Simplify:

$$\frac{x^2 + x - 6}{x - 2} =$$

44. Simplify:

$$\frac{\hat{a}^2 b + ab^3 + a^3 b^4}{\hat{a}^2 b} =$$

45. Find the quotient of the following:

$$\frac{x^3 - 3x^2 - 4x + 12}{x - 2}$$
46. Add and simplify: \(\frac{2}{x+1} + \frac{1}{x-1} \)

47. Subtract and simplify: \(\frac{2x-1}{x+2} - \frac{2}{x-3} \)

48. Divide and simplify: \(\frac{x-2y}{2x+2y} + \frac{xy-2y^2}{x^2-y^2} \)

Topic VII – Exponents and Square Roots

49. Evaluate: \(\frac{4^2}{4^6} \)

50. Evaluate: \(\frac{(3^3)(2^5)(a^4)}{(a^2)(3^2)(2^2)} \)

51. Simplify: \(\sqrt{48} \)

52. Evaluate: \(2^{-3} \)

53. Expand: \((-x^2y^3)^3 \)

54. Multiply: \((a^5b)(-b^5a^2) \)

55. Expand and simplify: \((\sqrt{3} - \sqrt{x})^2 \)

56. If \(x > 0 \), then \(\sqrt{14x} \cdot \sqrt{7x^3} = \)

57. Simplify: \(\sqrt{36a^2 + 16b^2} \)

58. Simplify: \(2\sqrt{8} + \sqrt{32} - \sqrt{50} \)

59. Simplify and express with positive exponents: \(\frac{x^3y^2x}{x^2y^2y^3} \)

60. Simplify: \(\frac{(7a^2b)(3a^3b)}{a^3b^3} \)
61. Simplify and express with positive exponents: \(\frac{x^3 y^2 z^4}{x^2 y^2 z^5} \)

62. Simplify and express with positive exponents: \((x^7 y^2)(x^4 y^{-3})^{-1} \)

63. Express the following in scientific notation:
 a) 2,365,000
 b) −0.000456

64. Express the following in standard notation:
 a) \(-2.51 \times 10^4\)
 b) \(6.156 \times 10^{-2}\)

Topic VIII – Geometric Measurement

65. In the rectangle ABCD shown, find the length of AC.

![Diagram of rectangle ABCD with lengths 3 and 5]

66. Find the measure of \(\Theta \) in the triangle ABC.

![Diagram of triangle ABC with sides 9 and angles 36° and 36°]

67. Find the surface area of the rectangular prism pictured here. Find the volume also.

![Diagram of rectangular prism with dimensions 8, 10, and 5]
68. The area of a circle is \(\frac{25\pi}{4} \). Find the radius of the circle.

69. Lines \(L \) and \(L \) are parallel and \(AB = EF \). What is true about the areas of \(ABDC \) and \(EFHG \)?

70. Find the measure of angle \(X \). Lines \(m_1 \) and \(m_2 \) are parallel.

71. Find the area of the shaded region.

72. Find the measure of angle \(A \).
73. Find the measure of X in this figure.

74. Find the measure of x in this right triangle.

75. Find the length of x in this right triangle.

76. The radius of the circle is 5.
What is the perimeter of the square?
What is the area of the square?

77. Find the length of x in the figure shown here.
78. These triangles are similar. Find the measure of x.

79. Find the measure of $\angle BEC$ if $\angle CED$ is a right angle.

80. Triangle ABC is similar to triangle DEF. Find the length of DF.

81. OMIT
Topic IX – Word Problems

82. The length of a rectangle is 3 times its width plus 3 inches. If the perimeter is 54 inches, how wide is the rectangle?

83. An item is sold for $138. If this price is 15% more than the cost, what is the cost of the item?

84. A number is divided by 5 and then multiplied by 7. The result is 14. Find the number.

85. Two integers have a sum of 22 and a product of 105. What are the numbers?

86. Ruth has $1.15 in change consisting of only nickels and dimes. If she has 15 coins altogether, how many nickels and how many dimes does she have?

87. A triangle has an area of 16. If its base is half of its height, what is the base of the triangle?

88. $9000 is invested in two accounts. Account A pays 4% annual interest and account B pays 6% annual interest. In one year a total of $383 is earned in interest. How much was invested in each account?

89. The sum of three consecutive integers is 24. Find the numbers.
Answers to the EGAD Sample Diagnostic Test

1.
2. \(\frac{1}{8} \)
3. 5.167
4. \(2^{16} \)
5. \(10a^3b^5 - 55a^2b^2 + 15ab^2 \)
6. \((3a + 5b)(3a - 5b) \)
7. \(x = -6, \ x = \frac{5}{2} \)
8. -74
9. \(4x^2 - 20xy + 25y^2 \)
10. \((3a + 2)(a - 3) \)
11. \(m^2 + 2m + 2 \)
12. \(-2wv - 7w + 4v - 4 \)
13. \(3ab^2z^2(5a^2z^3 - 3b + 8ab) \)
14. \(x = -7 \)
15. \(x = \frac{3a + c}{2} \)
16. \(x = 8 \)
17. \(x = -1, \ y = -2 \)
18. \(x = 3, \ y = -2 \)
19. \(x > -\frac{4}{7} \)
20. \(x = 5 \)
21. \(x = -5, \ x = \frac{3}{2} \)
22. \(x = 0, \ x = \frac{5}{2} \)
23. \(x = \frac{3}{2}, \ x = 2 \)
24. \(x = 2 \pm \sqrt{2} \)
25. \(x = 0, \ x = -6 \)
26. \(x = 4, \ x = -3 \)
27. \(x = 2, \ x = 3 \)
28.

29. \([-6, -2]\)
30.

31. (1, 2)
32. F
33.

34. \(y = -\frac{3}{2}x + 3 \) or \(3x + 2y = 6 \)
35.

-6, -2
36.

\[\begin{align*}
49. & \quad \frac{1}{4} \\
50. & \quad 24a \\
51. & \quad 4\sqrt{3} \\
52. & \quad \frac{1}{8} \\
53. & \quad -x^y \cdot y^x \\
54. & \quad -a^b \cdot b^a \\
55. & \quad 3 - 2\sqrt{3x + x} \\
56. & \quad 7x^2 \frac{\sqrt{2}}{} \\
57. & \quad 2\sqrt{9a^2 + 4b^2} \\
58. & \quad 3\sqrt{2} \\
59. & \quad \frac{y^5}{x^7} \\
60. & \quad 63a^5 \\
61. & \quad \frac{y^4z}{x^5} \\
62. & \quad \frac{y^5}{x^{11}} \\
63. & \quad a) \quad 2.365 \times 10^6 \\
& \quad b) \quad -4.56 \times 10^{-4} \\
64. & \quad a) \quad -25,000 \\
& \quad b) \quad .06156 \\
65. & \quad \sqrt{34} \\
66. & \quad 48^\circ \\
67. & \quad \text{Surface area: 340 square units} \\
& \quad \text{Volume: 400 cubic units} \\
68. & \quad \frac{5}{2} \\
69. & \quad \text{They are equal.} \\
70. & \quad 48^\circ \\
71. & \quad 12 \text{ square units} \\
72. & \quad 60^\circ \\
73. & \quad 63^\circ \\
74. & \quad 7\sqrt{3} \\
75. & \quad 3\sqrt{2} \\
76. & \quad \text{Perimeter: 20} \sqrt{2} \text{ units} \\
& \quad \text{Area: 50 square units} \\
77. & \quad 4\sqrt{11} \\
78. & \quad 35 \\
\end{align*} \]
79. 40°
80. \(\frac{35}{9} \)
81. (7, 8)
82. 6 inches
83. $120
84. 10
85. 7 and 15
86. 7 nickels and 8 dimes
87. 4
88. $7850 in account A
 $1150 in account B
89. 7, 8, 9
Intermediate Algebra Diagnostic Test (IAD)

The Intermediate Algebra Diagnostic Test (IAD) is required in order to stay in these Math classes: Math 17, 24, 26A, 29, 107A, and Statistics 1.

The IAD has 45 multiple choice questions. The test time is 60 minutes. NO CALCULATORS are allowed.

What score do you need?

<table>
<thead>
<tr>
<th>For this Math course:</th>
<th>If your score is…</th>
<th>Then…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 17 or 107A</td>
<td>8 or less</td>
<td>Take LS 7AB or LS10</td>
</tr>
<tr>
<td></td>
<td>9 to 19</td>
<td>Take Math 9</td>
</tr>
<tr>
<td></td>
<td>20 to 23</td>
<td>Take Math 9 or Math 11</td>
</tr>
<tr>
<td></td>
<td>24 to 28</td>
<td>Advisory qualification for course</td>
</tr>
<tr>
<td></td>
<td>29 or more</td>
<td>Qualifies for course</td>
</tr>
<tr>
<td>Math 24, 26A, 29</td>
<td>8 or less</td>
<td>Take LS 7AB or LS10</td>
</tr>
<tr>
<td>Stats 1</td>
<td>9 to 19</td>
<td>Take Math 9</td>
</tr>
<tr>
<td></td>
<td>20 to 26</td>
<td>Take Math 11</td>
</tr>
<tr>
<td></td>
<td>27 to 31</td>
<td>Advisory qualification for course</td>
</tr>
<tr>
<td></td>
<td>32 or more</td>
<td>Qualifies for course</td>
</tr>
</tbody>
</table>

The following is a list of topics covered on the IAD. That is followed by an IAD Sample Test with answers, which has problems in the same order as the topics list. If you find a section difficult, use the IAD Study Topics list to help you find a similar section in an Intermediate Algebra textbook. Read and work problems in the text until you understand how to do these problems. You may also find it helpful to do the Elementary Algebra Diagnostic (with Geometry) Test (EGAD) Sample Test as well.

Study Guide: Intermediate Algebra Diagnostic Test

Topic I – Elementary Operations

- Simplification of algebraic expressions
- Laws of Exponents with positive integral exponents
- Scientific notation
- Absolute Value

Topic II – Rational Expressions

- Simplification, addition, subtraction, multiplication, division or rational expressions
- Complex rational expressions
Topic III – Exponents and Radicals
Laws of exponents with rational and literal exponents
Numerical and algebraic calculations with rational exponents and radicals
Factorization and simplification of algebraic expressions with rational and literal exponents and radicals
Rationalization techniques

Topic IV – Linear Equations and Inequalities
Solution on one and two linear equations
Solution of equations reducible to a linear equation
Solution of linear equalities

Topic V – Quadratic Polynomials, Equations, and Inequalities
Polynomial algebra
Factorization
Completing the square
Solution of quadratic equations by factoring and the quadratic formula
Solution of quadratic inequalities
Complex numbers

Topic VI – Graphing and Geometry
Points in the coordinate plane
Distance in the coordinate plane
Slope and intercepts and quadratic equations
Graphs of linear and quadratic equations

Topic VII – Logarithms and Functions
Numerical and literal function evaluation
Definition and rules of logarithms
Logarithmic and exponential equations

Topic VIII – Word Problems
Problems involving percents, average, ratio, and proportions
Problems leading to linear and quadratic equations
Problems from geometry
Intermediate Algebra Diagnostic Sample Test Questions

Topic I—Elementary Operations

1. Express in scientific notation: \((5.7 \times 10^6)(2.3 \times 10^{-3}) \)

2. Express in scientific notation: \(\frac{3.81 \times 10^{-5}}{1.05 \times 10^{-7}} \)

3. Simplify: \(\frac{4}{x} \cdot \frac{x^2 y^3}{24} \cdot \frac{9}{y^4} \)

4. Add and simplify: \(2[(y - x) - 5] - 3[4 - (x - y)] \)

5. If \(x = (-1) \) and \(a = 2 \), then \(\frac{(x^3)^1 \cdot a^4}{a^2 x^2} = \)

6. If \(a = -3 \), evaluate: \(|1 - a| - 2|a + 2| + 1 \)

Topic II—Rational Expressions

7. Add and simplify: \(\frac{xy^2 - x^2 y}{xy + y^2} + 2x \)

8. Add and simplify: \(\frac{xy^3}{y - x} + \frac{y^5 + xy^4}{xy + y} \)

9. Simplify: \(\frac{y - x}{(2 + 2x^2)} \cdot \frac{4x^2}{(x^2 - y^2)} \)

10. Simplify: \(\frac{1}{x+2} - \frac{x+3}{x^2+3x+2} + \frac{3x-1}{x^2-1} \)

11. Simplify: \(\left(\frac{3}{y} + \frac{1}{4} \right) \left(\frac{y - \frac{1}{4y}}{y} \right) \)
12. Simplify: \[
\left(\frac{-1}{x+1} + \frac{x}{2} \right) \left(\frac{1}{x+1} - \frac{3}{x} \right)
\]

Topic III – Exponents and Radicals

Assume all variables are positive real numbers

13. Evaluate: \[8^{2/3}\]

14. Simplify: \[\sqrt{10} \cdot \sqrt{20}\]

15. Simplify: \[\sqrt{16x^2 + 24y^2 + 36z^2}\]

16. Simplify: \[
\frac{(3ab^{3/2})(4a^2b)^2}{ab^{3/2}}
\]

17. Simplify: \[(x^3y^2)^2 (x^6y^2)^2\]

18. Simplify: \[\sqrt{8a^3} + a\sqrt{32a} + \sqrt[3]{16a^3}\]

19. Simplify: \[
\left(\frac{4^3 x^{3/2} y^{4/3}}{16x^{1/2}y^2} \right)^{-1/2}
\]

20. Simplify: \[
\frac{a^{(3x+2)}}{a^{(4-x)}}
\]

21. Simplify: \[
\frac{z^2 x^4 y^3}{y^2 z x^2}
\]

22. Express without radical signs: \[\sqrt[3]{x} \cdot \sqrt[4]{x}\]

23. Express without radical signs: \[\sqrt[4]{z}\]
24. Solve for \(y \): \(2x = \frac{5 - 3y}{4} \)

25. Simplify: \(\frac{10^x}{2^z} \)

26. Rationalize the denominator: \(\frac{2}{\sqrt{3} - \sqrt{7}} \)

Topic IV – Linear Equations and Inequalities

27. Solve this system of equations:

\[
\begin{align*}
\frac{1}{2}x + 3y &= -5 \\
5x - 2y &= 14
\end{align*}
\]

28. Solve this system of equations:

\[
\begin{align*}
4x &= 5y \\
2x + 3y &= 22
\end{align*}
\]

29. Solve for \(x \):

\(2 - \sqrt{1 - x} = -3 \)

30. Solve for \(m \):

\(17 - 19m > -4(m + 5) \)

31. Solve for \(x \):

\(3(5 - 4x) - (3 - 7x) = -2 + 9x \)

Topic V – Quadratic Polynomials, Equations, and Inequalities

32. Multiply:

\((x^2 - 5x)(4x^2 - 3x + 2) \)

33. Factor:

\(4a^2 - 9a^2b^4 \)

34. Solve for \(x \):

\(x^2 + \frac{5}{2}x = \frac{3}{2} \)

35. Solve for \(x \):

\(x^2 + x^2 - 2 = 0 \)

36. If you solve this equation by completing the square, what do you add to each side of the equation?

\(x^2 + 3x = 4 \)

37. Solve for \(x \):

\(2x^2 + 4x + 1 = 0 \)

OMIT 38.

OMIT 39.
40. Simplify: \(\frac{i}{2-5i} \)

41. Solve for \(z \): \(3z^2 - 4z + 2 = 0 \)

42. Solve for \(a \): \(3 - \frac{1}{1+2a} = \frac{1}{a-1} \)

43. For what values of \(m \) is \((2m-1)(m-5)>0 \) ?

Topic VI – Graphing and Geometry

44. Find an equation of the line which passes through the points \((1, 3)\) and \((7, -2)\).

45. Find an equation of the line with a slope of 3 which passes through the point \((0, -2)\).

46. Find the distance between points A and B in the graph shown below.

![Graph of line segments](image)

47. What is the midpoint of the line segment between the points \((-5, 3)\) and \((7, -2)\)?

48. Find the quadratic function whose graph is shown in the figure below.

![Quadratic Graph](image)
49. Find the slope of the line, \(L \), shown in the figure below.

50. Graph the equation: \(y = 4 \)

51. Graph the equation: \(3x - 4y - 5 = 0 \)

52. Graph the equation: \(y = 2x^2 - 1 \)

53. OMIT

54. Find the exact value of \(x \):

55. OMIT

56. OMIT

57. OMIT

58. OMIT

59. OMIT

60. OMIT
Topic VII – Logarithms and Functions

61. If \(f(x) = 3x^2 - 4x + 5 \), then \(f(u - 2) \) equals…

62. If \(f(h) = h + \frac{3}{h} + 2 \), find \(f(-3) \).

63. Write \(\log_a b = x \) in exponential form.

64. Solve for \(x \): \(4^{3x} = 16 \)

65. Solve for \(x \): \(\log_5 125 = 3 \)

66. Evaluate: \(\log_{64} 16 \)

67. Solve for \(x \): \(\log_5 (2x + 5) = 3 \)

68. Solve for \(x \): \(\log_2 x + \log_2 (x - 7) = 3 \)

69. Simplify: \(\log_5 25 - \log_4 \frac{1}{16} - \log_7 7 = \)

Topic VIII – Word Problems

70. You can exchange $2.00 for £1.7. How many pounds (£) can you get for $15?

71. The side of a square is doubled. How much does the area change?

72. If 73% of a number is 365, what is the number?

73. 10 is to 28 as 35 is to what number?

74. The product of two numbers is \(-48 \). Their sum is 13. What are the numbers?

75. A rectangle has an area of 40 and a perimeter of 26. What are the dimensions of the rectangle?

76. Five times a positive number is equal to the difference of the square of that number and 36. What is the number?
Answers to the Intermediate Algebra Sample Test

1. 1.311×10^4
2. 3.63×10^2
3. $3x$
4. $x - y - 22$
5. -4
6. 3
7. $\frac{x^2 + 3xy}{x + y}$
8. $\frac{xy^2 + y^3}{(y - x)(x+1)}$
9. $\frac{3x}{(1 + x^2)(x + y)}$
10. $\frac{12 + y}{4y^2 - 1}$
11. $-x(x+2)(x-1)$
12. $\frac{2(x+3)}{2(x+2)(x-1)}$
13. $\frac{1}{4}$
14. $10\sqrt{2}$
15. $2\sqrt{4x^2 + 6y^2 + 9z^2}$
16. $\frac{3}{16a^2b^3}$
17. x^6
18. $6a\sqrt{2a + 2a\sqrt{2}}$
19. $\frac{y^{1/5}}{2\sqrt[5]{x}}$
20. $\frac{y^{1/2}}{x}$
21. $\frac{y^{3/2}z}{x^2}$
22. $x^{2/3} \cdot x^{1/6} = x^{13/15}$
23. $\left(\frac{z^{1/3}}{z}
ight)^{\sqrt[3]{y}} = z^{1/6}$
24. $y = \frac{5 - 8x}{3}$
25. $\left(\frac{10}{2}\right)^x = 5^x$
26. $\frac{-\sqrt{3} - \sqrt{7}}{2}$
27. $x = 2, y = -2$
28. $x = 5, y = 4$
29. $x = -24$
30. $m < \frac{37}{15}$
31. $x = \frac{-7}{2}$
32. $4x^4 - 23x^3 + 17x^2 - 10x$
33. $a^2 \left(2 + 3b^2\right)\left(2 - 3b^2\right)$
34. $x = \frac{1}{2}$ or $x = -3$
35. $(x^2 + 2)(x+1)(x-1) = 0$
36. $x = \pm i\sqrt{2}, \pm 1$
37. $\frac{-2 \pm \sqrt{2}}{2}$
38. $1, 25$
39. $a = 27$ (only 27 checks)
40. $\frac{-5 + 2i}{29}$
41. $\frac{2 \pm i\sqrt{2}}{3}$
42. $\frac{1 \pm \sqrt{3}}{2}$
43. $m < \frac{1}{2}, m > 5$
44. $y = -\frac{5}{6}x + \frac{23}{6}$ or $5x + 6y = 23$
45. \(y = 3x - 2 \)
46. \(\sqrt{26} \)
47. \(\left(1, \frac{1}{2} \right) \)
48. \(y = -\frac{1}{2}x^2 + 2 \)
49. \(m = \frac{3}{2} \)
50.

51. \(\left(0, -\frac{5}{4} \right) \) and \(\left(\frac{5}{3}, 0 \right) \)

52.

53. OMIT

54. \(\sqrt{51} \)

55. through 60. OMITTED

61. \(3u^2 - 16u + 25 \)
62. \(-2\)
63. \(a = b^r\)
64. \(x = \frac{2}{3}\)
65. \(x = 5\)
66. \(\frac{2}{3}\)
67. \(x = 60\)
68. \(x = 8\) (\(x\) cannot be \(-1\))
69. \(3\)
70. \(\£12.75\)
71. \(4\) times
72. \(500\)
73. \(98\)
74. \(-3\) and \(16\)
75. \(5 \times 8\)
76. \(9\)
Calculus Readiness Diagnostic Test (CR)

The Calculus Readiness Diagnostic Test (CR) is required in order to remain enrolled in Math 30. There are 60 multiple choice questions on this exam and the test has a 90 minute time limit. No calculators are allowed.

What score do you need:

<table>
<thead>
<tr>
<th>If your score is…</th>
<th>Then…</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 or less</td>
<td>Take Math 9</td>
</tr>
<tr>
<td>20 to 26</td>
<td>Take Math 11</td>
</tr>
<tr>
<td>27 to 31</td>
<td>Advisory qualification for Math 29</td>
</tr>
<tr>
<td>32 to 35</td>
<td>Qualifies for Math 29</td>
</tr>
<tr>
<td>36 to 40</td>
<td>Advisory qualification for Math 30</td>
</tr>
<tr>
<td>41 or more</td>
<td>Qualifies for Math 30</td>
</tr>
</tbody>
</table>

The following Precalculus Study Topics list covers the topics on the Calculus Readiness Test. This section is then followed by sample test questions arranged in the same topical order. If you find a section difficult, use the Precalculus Study Topics List to help you find a similar section in a Precalculus textbook. Then read and work problems in the text until you understand how to do these problems. You may also find it helpful to work through the EGAD and IAD Sample Tests.

Calculus Readiness Test Study Topics

Topic I – Rational Expressions
- Addition, Subtraction, Multiplication, Division of rational expressions
- Complex rational expressions

Topic II – Exponents and Radicals
- Laws of Exponents
- Calculations with exponents and radicals
- Conversion between radicals and exponents
- Rationalization techniques

Topic III – Linear Equations, Inequalities, Absolute Value
- Solution of one and two linear equations
- Solution of equations reducible to linear equations
- Graphs of linear inequalities
- Solution of linear inequalities
- Simplification of expressions involving absolute value
- Solution of equations and inequalities involving absolute value

Topic IV – Polynomials and Polynomial Equations
- Polynomial algebra
- Factorization
- Completing the square
Solution of polynomial equations by factoring
Solution of quadratic equations by quadratic formula
Graphs of quadratic equations
Solution of quadratic inequalities

Topic V – Functions
Function concept and notation
Function evaluation and composition
Graphs of translations, reflections, and absolute value functions

Topic VI – Trigonometry
Right angle trigonometry
Trigonometric functions and circular functions
Radian and degree measure
Special angles
Trigonometric identities
Graphs of trigonometric functions

Topic VII – Logarithmic and Exponential Functions
Definition and laws of logarithms
Evaluation of logarithmic expressions
Graphs of logarithmic and exponential functions
Inverse relation between logarithm and exponential functions
Logarithmic and exponential equations

Topic VIII – Word Problems
Problems involving percent, average, ratio, and proportion
Problems leading to linear and quadratic equations
Problems from geometry
Calculus Readiness Sample Test Questions

Topic I – Rational Expressions

Simplify the following:

1. \(\frac{9x^2 - 12x}{x^2 + 1} \left(\frac{2x^2 + 2}{9x^2 + 6x - 24} \right) \)

2. \(\frac{1 - \frac{3}{x}}{9 - x^2} \)

3. \(\left(\frac{6\nu^2}{\nu^2} \right) \left(\frac{-uv}{2v} \right) \left(\frac{1}{7v^2} \right) \)

4. \(\frac{-4}{9 - x^2} - \frac{2x + 1}{x^2 - 3x} \)

5. \(\frac{3}{(x + 2b)(x - b)} + \frac{2}{(3b - x)(x + 2b)} + \frac{1}{(x - 3b)(b - x)} \)

6. \(\left(\frac{2a}{b} - \frac{b}{a} \right)^2 \)

7. \(\left(\frac{xy^2}{x + y} \right) \)

8. \(\left(\frac{m}{m - 3} - \frac{2m}{m^2 - 2m - 3} \right) \left(\frac{2}{m + 1} - \frac{1}{m} \right) \)
Topic II – Exponents and Radicals

9. Evaluate: \(81^{\frac{3}{4}}\)

Simplify the following:

10. \(\sqrt{6} \sqrt{15}\)

11. \(\sqrt{(a + b)(a^2 - b^2)}\)

12. \(\sqrt{16x^2 + 24y^2 + 36z^2}\)

13. \(\frac{3xy^{\frac{1}{2}}}{(4x^2y)^{-2}}\)

14. \(\frac{a^2b^3c}{a^3b^{-2}c^0}\)

15. \(\frac{a^{3x+2}}{a^{4-x}}\)

16. \((m^{b+1})^{-1}\)

17. \(\left(\frac{4^3x^\frac{3}{2}y^\frac{5}{3}}{16x^{-\frac{1}{2}}y^2}\right)^{-\frac{1}{2}}\)

18. \((-125x^{10}y^{24})^{\frac{2}{5}}\)

19. \(\left(\sqrt[3]{m^6}\right)(2m\sqrt{m})\)

20. \(2\sqrt{12} + \sqrt{27} - \sqrt{48}\)

Rationalize the following:

21. \(\frac{x}{\sqrt[3]{4}}\)
22. \(\frac{3 \sqrt{x}}{\sqrt{x^2}} \)

23. Solve for \(x \): \(3^{x^2} = 27^{x-4} \)

Topic III – Linear Equations, Inequalities, and Absolute Value

24. Solve for \(x \): \(3x = \frac{a}{b}(x-1) \)

25. Solve for \(a \): \(\sqrt{a-2} + 3 = 7 \)

26. Solve for \(x \): \(\frac{3}{x} - \frac{2}{x+1} = \frac{5x+3}{x+1} \)

27. Solve this system of equations: \[
\begin{align*}
2x + 3y &= -5 \\
5x - 2y &= 8
\end{align*}
\]

28. Solve this system of equations: \[
\begin{align*}
3x &= 4y \\
2x + 3y &= 17
\end{align*}
\]

29. If \(m = -3 \), evaluate \(|3 - m| + |-4| - |-m| \)

30. Find an equation of this line:

![Graph of a line](image)

31. Solve for \(x \): \(|5 - 2x| \leq 3 \)
32. Given the points (1, 1) and (3, 4), find the area of the right triangle formed by the line through those points, the x-axis, and x = 3.

Topic IV – Polynomials and Polynomial Equations

33. Solve for x: \(x - 6 \sqrt{x} + 5 = 0 \)

34. Solve for x: \(-4x^2 + 12x + 3 = 0\)

35. Solve for x: \((x - 2)(x - 3) = 2\)

36. If you wanted to complete the square for \(x^2 - 3x = 2\), what would you add to both sides?

37. Solve for x: \(2 = \sqrt{2x - 5} - \sqrt{x - 2}\)

38. Simplify: \(\frac{x^4 - 14x^2 + 3x + 34}{x - 2}\)

39. Find the values of a so that the following has 2 distinct real roots: \(2ax^2 - 12x - 7\)

40. Solve for x: \(x^2 - x - 42 > 0\)

41. Graph: \(y = x^2 - x - 6\)

42. Graph: \(|x + 2| = y\)

43. Graph: \(y = 2x + 1\)

44. Graph: \(y = \frac{2}{x}\)

45. If \(x = 3\), \(y = -1\), and \(z = -2\), evaluate \(\frac{x^2 - xy^2z}{z^2y^2 - xz}\)

46. Find the vertical and horizontal asymptotes of \(f(x) = \frac{x + 1}{(2x - 1)(x + 3)}\)

Topic V – Functions

47. Find \(f(0)\) when \(f(x) = \frac{3x^2 - 4x + 5}{ax^2 + bx - 2}\)

48. If \(f(x) = -\frac{2}{x - 1}\), find \(f\left(\frac{1}{x + 3}\right)\).

49. If \(f(x) = x^2 - 1\) and \(g(x) = 2x + 1\), find a) \(f(g(x))\) and b) \(g \circ f(x)\)
50. If \(f(x) = \frac{3x+2}{2x-1} \), for what \(x \) does \(f(x) = -3 \)?

51. Find \(\frac{4}{f(3)} \) if \(f(t) = \frac{t^2 - 1}{2t - 2} \).

52. Graph: \(f(x) = \frac{1}{2x+1} \).

53. Graph: \(f(x) = |x^2 - 2| \).

54. Find the domain and range of \(g(x) = \sqrt{x^2 - 2x - 5} \).

55. Express the domain and range of \(g(x) = \left(25 + 4x - x^2\right)^{1/2} \) in interval notation (with exact answers, no decimals).

56. Find the area of the interior region of this figure:

57. Let \(f(x) = 3x - 5 \). If \(3f(a) = f(2a + 1) \), then \(a = \)

Topic VI – Trigonometry

58. Find \(\cos \Theta \) in the given triangle.

59. Use this triangle to find \(\cot \Theta \sin \Theta \).
60. Evaluate: \(\cos(\Theta + \pi) \)

61. Verify this identity: \(\sec \Theta - \cos \Theta = \tan \Theta \sin \Theta \)

62. Graph the function: \(y = \frac{3}{2} \cos(2x) \)

63. Graph: \(y = \sin\left(\frac{x}{2}\right) \)

64. In the figure shown, find \(\csc \Theta \).

65. Express 114° in radians.

66. Which trig functions are even?

67. Find \(\sin^{-1}\left(\frac{\sqrt{12}}{4}\right) \).

68. Find \(\cos\left(\frac{5\pi}{3}\right) \).

Topic VII – Logarithmic and Exponential Functions

69. Solve for \(b \): \(\log_b b = x \)

70. Solve for \(x \): \(2^x = 5 \)

71. Evaluate: \(\log_{36} \sqrt{6} \)

72. Evaluate: \(\log_a \left(\frac{9^6}{27}\right) \)
73. Simplify: $\log(a^2 b) - \log(2a) + \log(b)$

74. Solve for x: $5^x - \frac{1}{25} = 0$

75. Solve for y: $\log_4(3y - 5) = 2$

76. Graph: $y = \left(\frac{1}{3}\right)^x$

77. Graph: $x = \log_2(y + 3)$

Topic VIII – Word Problems

78. A bakery has a special on peanut butter cookies and chocolate chip cookies. There are 12 dozen cookies on special. If there are 40% more chocolate chip cookies than peanut butter cookies, how many chocolate chip cookies are there?

79. A 24w by 36L inch poster is enlarged so that its length is 5 ft. What is its width?

80. The circumference of a circle is quadrupled. How much is the area increased?

81. The sum of two numbers is 179½. Six times the first number minus seven times the second number is 778. Find the numbers.

82. The cube root of a number is squared and the result is 16. What is the number?

83. The price of an airplane ticket is decreased 16% to $193.20. What was the original price?

84. If the radius of a circle is decreased by 15%, what is the percent decrease in the area of the circle?

85. What is the surface area of the given triangular prism?
86. Find the area of the given figure to the nearest tenth of a unit.

87. How long does it take something to travel 500 meters at 42 meters per second?

88. A tree twenty-five feet tall casts a shadow that is 35 feet long. If the shadow of a nearby building is 119 feet long, how tall is the building?
Answers to the Calculus Readiness Sample Test Questions

1. \(\frac{2x}{x+2} \)
 \(-1\)

2. \(\frac{-3v}{7u} \)

3. \(\frac{2x^2 + 3x + 3}{x(x+3)(3-x)} \)

4. \(\frac{9b}{(x+2b)(3b-x)(x-b)} \)

5. \(\frac{a^2 b^3}{(2a^2 - b^3)^2} \)

6. \(\frac{xy^2}{m^3} \)

7. \(\frac{1}{m-3} \)

8. \(\frac{3\sqrt{10}}{} \)

9. \(\frac{(a+b)^2}{\sqrt{a-b}} \)

10. \(2\sqrt{4x^2 + 6y^2 + 9z^2} \)

11. \(\frac{3}{16x^3 y^3} \)

12. \(\frac{b^5 c}{a} \)

13. \(\frac{a^4 x^2}{a^{2.1}} \)

14. \(\frac{m}{(y^{2.1})} \)

15. \(\frac{y^{1/2}}{2x} \)

16. \(\frac{1}{25x^{1/2} y^{16}} \)

17. \(\frac{2m^3}{3\sqrt{3}} \)

18. \(\frac{x^8}{\sqrt{8}} \)

19. \(\frac{x^3}{2} \)

20. \(\frac{9}{7} \)

21. \(\frac{x^9}{8} \)

22. \(x^{1/2} \)

23. \(x = -7 \)

24. \(\frac{-a}{3b-a} \) or \(\frac{a}{a-3b} \)

25. \(a = 18 \)

26. \(x = \frac{3}{5} \)

27. \(x = \frac{14}{19}, y = \frac{-41}{19} \)

28. \(x = 4, y = 3 \)

29. \(7 \)

30. \(3x + 4y = 12 \)

31. \(1 \leq x \leq 4 \)

32. The line formed by the 2 points is \(3x - 2y = 1 \). This line intersects the x-axis at \(\left(\frac{1}{3}, 0 \right) \), so the base of the right triangle is \(\frac{8}{3} \) units in length. The area is then \(\frac{16}{3} \) sq units.

33. \(x = 1, 25 \)

34. \(3 \pm 2\sqrt{3} \)

35. \(x = 1 \) or \(4 \)

36. Add \(\frac{4}{a} \) to both sides.

37. \(x = 27 \) (3 doesn’t work)

38. \(x^3 + 2x^2 - 10x - 17 \)

39. \(a > \frac{-18}{7} \)

40. \(x < -6 \) or \(x > 7 \)
41. \[\frac{3}{2} \]

42.

43.

44.

45.

46. Vertical: \[x = \frac{1}{2}, \ x = -3 \]
 Horizontal: \[y = 0 \]

47. \[-\frac{5}{2} \]

48. \[\frac{2(x+3)}{x+2} \]

49. a) \[4x^2 + 4x \]
 b) \[2x^2 - 1 \]

50. \[x = \frac{1}{9} \]

51. 2

52.

53.

54. domain: \[x \leq \left(-\sqrt{6} \right) \text{ or } x \geq \left(1 + \sqrt{6} \right) \]
 range: \[0 \leq g(x) \leq \infty \]

55. domain: \[\left[2 - \sqrt{29}, 2 + \sqrt{29} \right] \]
 range: \[0, \sqrt{29} \]

56. 25
57. \[a = \frac{13}{3} \]

58. \[\cos \Theta = \frac{3\sqrt{2}w^2 - 9}{w^2} \]

59. \[b = \frac{\cos \Theta}{\sqrt{a^2 + b^2}} \]

60. \[\cos \Theta = \frac{-1}{\cos \Theta} \]

61. \[\sec \Theta - \cos \Theta = \frac{1}{\cos \Theta} \]
\[= \frac{1 - \cos^2 \Theta}{\cos \Theta} \]
\[= \frac{\sin^2 \Theta}{\cos \Theta} \]
\[= \frac{\sin \Theta \cdot \sin \Theta}{\cos \Theta} \]
\[= \tan \Theta \sin \Theta \]

62. \[\cos \Theta = \frac{19\pi}{30} \]

63. \[\sec \Theta = \cos \Theta \]

64. \[\cos \Theta = \frac{1}{2} \]

65. \[b = a^2 \]

66. \[\cosine and secant \]

67. \[\frac{\pi}{3} \text{ or } 30^\circ \]

68. \[\frac{1}{2} \]

69. \[\log \left(\frac{ab^3}{2} \right) \]

70. \[x = \frac{\log 5}{\log 2} \text{ or } \frac{\ln 5}{\ln 2} \]

71. \[\frac{1}{6} \]

72. \[\frac{9}{2} \]

73. \[x = \frac{2}{3} \]

74. \[y = 7 \]

75. \[p + 1.40p = 12; \text{ 7 dozen chocolate chip cookies} \]
79. 40 inches
80. 16 times
81. \(156\frac{1}{2}\) and 23
82. \(\pm 64\)
83. 230
84. 27.75%
85. \(227 + 15\sqrt{41}\)
86. 173.6
87. 11.9 sec
88. 85 ft.