0.1 Continuous Functions on Intervals

Definition 0.1.1. A function \(f : A \to \mathbb{R} \) is said to be bounded on \(A \) if there exists a constant \(M > 0 \) such that \(|f(x)| \leq M \) for all \(x \in A \).

Remark 0.1.2. A function is bounded if the range of the function is a bounded set of \(\mathbb{R} \). A continuous function is not necessarily bounded. For example, \(f(x) = \frac{1}{x} \) with \(A = (0, \infty) \). But it is bounded on \([1, \infty)\).

Theorem 0.1.3. Let \(I = [a, b] \) be a closed bounded interval, and \(f : I \to \mathbb{R} \) be continuous on \(I \). Then \(f \) is bounded on \(I \).

Proof. Suppose that \(f \) is not bounded on \(I \). Then for each \(n \in \mathbb{N} \), there exists \(x_n \in I \) such that \(|f(x_n)| > n \). As \(x_n \in I \), so \(\{x_n\} \) is bounded, by Bolzano-Weierstrass Theorem, there exists an accumulation point of \(\{x_n\} \), so there exists a subsequence of \(\{x_{n_k}\} \) so that \(x_{n_k} \to x \). Since \(a \leq x_{n_k} \leq b \), we also have \(a \leq x \leq b \), i.e., \(x \in I \). Since \(f \) is continuous on \(I \), we must have \(f(x_{n_k}) \to f(x) \). But this is a contradiction since \(|f(x_{n_k})| > n_k \geq k, k \in \mathbb{N} \). \(\square \)

Remark 0.1.4. In the proof, we use the result of earlier homework: if \(x_n \leq b \) for all \(n \in \mathbb{N} \), then \(\lim_{n \to \infty} x_n \leq b \). Similarly, if \(x_n \geq a \) for all \(n \), then \(\lim_{n \to \infty} x_n \geq a \).

Suppose that \(f : S \to \mathbb{R} \). Then define the supremum of \(f \) on \(S \), denoted \(\sup_S f \), to be
\[
\sup_S f = \sup\{f(x) : x \in S\},
\]
similarly, the infimum of \(f \) on \(S \) is defined by
\[
\inf_S f = \inf\{f(x) : x \in S\}.
\]

Note that \(\sup_S f \) could be \(+\infty \) and \(\inf_S f \) could be \(-\infty \), depending on the function \(f \) and \(S \). For example, \(f(x) = x^2 \) and \(S = \mathbb{R} \). Then \(\sup_S f = +\infty \) and \(\inf_S f = 0 \). Now if \(S = (0, 2) \), then \(\sup_S f = 4 \) and \(\inf_S f = 0 \). There are no points in \((0, 2)\) where \(f \) takes 0 and 4.

Remark 0.1.5. If there is \(c \in S \) such that \(\sup_S f = f(c) \), then \(f \) has an absolute maximum on \(S \) at \(c \). Similarly for absolute minimum.
Theorem 0.1.6. *(Maxima-Minimum Theorem)* Let \([a, b]\) be a closed and bounded interval, and \(f : I \rightarrow \mathbb{R}\) be continuous on \(I\). Then \(f\) has an absolute maximum and minimum, i.e., there exist points \(c, d \in I\) such that

\[
f(c) = \sup_I f(x) \quad \text{and} \quad f(d) = \inf_I f.
\]

Proof. As \(f\) is continuous on \(I\), so it is bounded. Hence both \(\inf f\) and \(\sup f\) exist. Thus, for each \(n \in \mathbb{N}\), there is \(x_n \in I\) such that

\[
\sup_I f - \frac{1}{n} < f(x_n) \leq \sup_I f.
\]

So we have a sequence \(\{x_n\} \subset I\), by Bolzana-Weierstrass, there exists a subsequence \(x_{n_k} \to c\), so \(f(x_{n_k}) \to f(c)\). But the limit is unique. Hence \(f(c) = \sup_I f\). Similarly we can prove that \(f(d) = \inf_I f\). \(\square\)

Theorem 0.1.7. *(Bolzano’s Intermediate Value Theorem)* Let \(f\) be a continuous function on \([a, b]\) such that \(f(a) \neq f(b)\). Let \(y\) be any real number between \(f(a)\) and \(f(b)\). Then there is an \(c \in (a, b)\) such that \(f(c) = y\).

Proof. Without loss of generality, consider \(f(a) < y < f(b)\). First define a set

\[
S = \{x \in [a, b] : f(x) < y\}.
\]

Thus, \(S \neq \emptyset\) as \(a \in S\). It is clear that \(S\) is bounded. So \(\sup S\) exists, let \(c = \sup S\). Now we prove that \(f(c) = y\). It is clear that \(a \leq c \leq b\).

Suppose that \(c = a\). As \(a \in S\) and \(f\) is continuous at \(a\), so \(f(a) < y\) which implies there exists a \(\delta > 0\) such that \(\forall x \in [a, a + \delta) \implies f(x) < y\). Each point in this neighborhood is in \(S\). This is a contradiction to \(c = \sup S\).

As \(c = \sup S\), there exists a sequence \(\{x_n\}\) in \(S\) such that \(x_n \to c\). From \(f(x_n) < y \implies f(c) \leq y\), as \(f\) is continuous at \(c\).

If \(f(c) < y\), again by \(f\) being continuous at \(c\), there is a neighborhood of \(c\), \((c - \delta, c + \delta)\), such that \(f(x) < y\) for all \(x \in (c - \delta, c + \delta)\), which is contradiction, as \(c = \sup S\). \(\square\)

Example 0.1.8. Consider \(f(x) = x^2 - 2\) on \([0, 2]\). So \(f(0) = -2, f(2) = 2\). Let \(y = 0\). Then from the theorem, there exists \(c \in (0, 2)\) such that \(f(c) = 0\), in fact, \(c = \sqrt{2}\).

One note about this: if we only consider the set of rationals, then the graph of \(x^2 - 2\) would cross the \(x\)-axis without meeting it. Another example of the set of real numbers complete (axiom 12).
Corollary 0.1.9. Let f be a continuous function on $[a,b]$ and define $m = \inf f$ and $M = \sup f$. Then the range of f is the interval $[m,M]$, i.e., $f([a,b]) = [m,M]$.

Proof. We know from above, there exists $c,d \in [a,b]$ such that $f(c) = m, f(d) = M$. And any number $y \in (m,M)$, there is $c \in (a,b)$ such that $f(c) = y$. From the definition m,M, f does not have values outside $[m,M]$. So the range equals $[m,M]$.

Theorem 0.1.10. Let I be an interval and let $f : I \to \mathbb{R}$ be continuous on I. If $\alpha < \beta$ are numbers in I such that $f(\alpha) < 0 < f(\beta)$ (or $f(\alpha) > 0 > f(\beta)$), then there exists a number $c \in (\alpha, \beta)$ such that $f(c) = 0$.

Proof. As f is continuous on I, so f is continuous on (α, β). Apply the Intermediate Value Theorem with $y = 0$.

Example 0.1.11. Let $f(x) = \frac{1}{x^2+1}$.

1. $I_1 = (-1, 1)$. $f(I_1) = (\frac{1}{2}, 1]$.

2. $I_2 = [0, \infty)$, $f(I_2) = (0, 1]$.

Lemma 0.1.12. Let $S \subseteq \mathbb{R}$ be a nonempty set with the property if $x, y \in S$ with $x < y$, then $[x, y] \subseteq S$. Then S is an interval.

Theorem 0.1.13. Let I be an interval and let $f : I \to \mathbb{R}$ be continuous on I. Then $f(I)$ is an interval.

0.2 Uniform Continuity

First recall the definition of f being continuous at x_0: $\forall \epsilon > 0 \exists \delta > 0 \ni \forall x : |x - x_0| < \epsilon \implies |f(x) - f(x_0)| < \epsilon$.

In general, δ depends on both ϵ and x_0, as function changes rapidly at some points and flat at some other points. We start some examples to look into this.

Example 0.2.1. Let $f : \mathbb{R} \to \mathbb{R}$ and $f(x) = 2x$. Let $x_0 \in \mathbb{R}$. Consider

$$|f(x) - f(x_0)| = |2x - 2x_0| = 2|x - x_0|.$$

From this we can see if we choose $\delta = \epsilon/2$, we have $|x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon$. In this case, δ depends only on ϵ, it works for all $x_0 \in \mathbb{R}$.

3
Example 0.2.2. Let \(f : (0, \infty) \to \mathbb{R} \) with \(f(x) = 1/x \). Let \(x_0 = u > 0 \).
Consider
\[
|f(x) - f(u)| = \frac{|x - u|}{xu}.
\]
As \(x \to u \), so consider only \(|x - u| < u/2 \), i.e., \(u/2 < x < 3u/2 \). Then \(1/x < 2/u \). Hence \(1/xu < (1/u)(2/u) = 2/u^2 \). Now given \(\epsilon > 0 \), choose \(\delta = \min\{u/2, u^2\epsilon/2\} \). So when \(|x - u| < \delta \), \(|f(x) - f(u)| < \epsilon \).

Here \(\delta \) depends on both \(\epsilon \) and \(u \). In fact, there is no \(\delta \) for all \(u > 0 \), as then \(\delta = 0 \).

See the graph of \(f(x) = 1/x \).

Definition 0.2.3. Let \(f : D \to \mathbb{R} \) is uniformly continuous on \(E \subset D \) iff \(\forall \epsilon > 0 \exists \delta > 0 \ \forall x, y \in E, |x - y|, \delta \Rightarrow |f(x) - f(y)| < \epsilon \). If \(f \) is uniformly continuous on \(D \), then \(f \) is uniformly continuous.

Remark 0.2.4. \(f \) uniformly continuous on \(E \) implies \(f \) is continuous on \(E \). The converse is not true.

Example 0.2.5.
1. \(f : [2.5, 3] \to \mathbb{R} \) defined by \(f(x) = \frac{3}{x-2} \).
2. \(f : (0, 6) \to \mathbb{R} \) with \(f(x) = x^2 + 2x - 5 \).
3. \(f : (2, 3) \to \mathbb{R} \) with \(f(x) = \frac{3}{x-2} \).

Non-uniform Continuity Criteria Let \(A \subset \mathbb{R} \) and let \(f : A \to \mathbb{R} \). Then the following statements are equivalent.

1. \(f \) is not uniformly continuous on \(A \).
2. \(\exists \epsilon_0 > 0 \) such that for every \(\delta > 0 \) there are points \(x_\delta, y_\delta \in A \) such that \(|x_\delta - y_\delta| < \delta \) and \(|f(x_\delta) - f(y_\delta)| \geq \epsilon_0 \).
3. \(\exists \epsilon_0 > 0 \) and two sequences \(\{x_n\} \) and \(\{y_n\} \) in \(A \) such that \(\lim(x_n - y_n) = 0 \) and \(|f(x_n) - f(y_n)| \geq \epsilon_0 \) for all \(n \in \mathbb{N} \).

Example 0.2.6. Let \(f : (0, \infty) \to \mathbb{R} \) with \(f(x) = 1/x \). Now pick \(\epsilon_0 = 1/2 \), and choose \(x_n = 1/n \) and \(y_n = 1/(n+1) \). Then \(\lim(x_n - y_n) = 0 \) and \(|f(x_n) - f(y_n)| = 1 > 1/2 \) for all \(n \).

Theorem 0.2.7. Let \(I \) be a closed bounded interval and let \(f : I \to \mathbb{R} \) be continuous on \(I \). Then \(f \) is uniformly continuous on \(I \).
Proof. If f is not uniformly continuous on I. From the above, $\exists \epsilon_0 > 0$ and $x_n, y_n \in I$ such that $x_n - y_n \to 0$ and $|f(x_n) - f(y_n)| \geq \epsilon_0$ for all n. As I is bounded, so by Bolzana-Weierstrass, there is a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ that converges to $z \in I$, as I is closed interval. In addition, from

$$|y_{n_k} - z| \leq |y_{n_k} - x_{n_k}| + |x_{n_k} - z|$$

$y_{n_k} \to z$ as well.

Now as f is continuous at z, so we have $f(x_{n_k}) \to f(z)$ and $f(y_{n_k}) \to f(z)$. But this is a contradiction, as $|f(x_n) - f(y_n)| \geq \epsilon_0$ for all n. \[\square\]

Lipschitz Functions

Definition 0.2.8. Let $A \subset \mathbb{R}$ and let $f : A \to \mathbb{R}$. If there exists a constant $K > 0$ such that

$$|f(x) - f(y)| \leq K|x - y|, \forall x, y \in A,$$

then f is said to be a Lipschitz function (or to satisfy a Lipschitz condition) on A.

Geometrically, f is Lipschitz if and only if the slopes of secant line joining points $(x, f(x))$ and $(y, f(y))$ are bounded by K.

Theorem 0.2.9. Let $f : A \to \mathbb{R}$ be a Lipschitz function, then f is uniformly continuous on A.

Proof. Let $\epsilon > 0$, choose $\delta = \epsilon/K$. Then for all $x, y \in A$ with $|x - y| < \delta$, we have $|f(x) - f(y)| < \epsilon$. \[\square\]

Example 0.2.10. Consider $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$. f is uniformly continuous on $[a, b]$ but not on \mathbb{R}.

Proof. Let $c \in \mathbb{R}$. Consider

$$|f(x) - f(c)| = |x^2 - c^2| = |x - c||x + c|.$$

As x is close to c, we assume that $|x - c| < 1$. So this implies $|x| < 1 + |c|$, thus $|x + c| \leq 1 + 2|c|$. Hence

$$|x - c||x + c| < |x - c|(1 + 2|c|).$$
Now for $\epsilon > 0$, choose $\delta = \min\{1, \frac{\epsilon}{1+2|c|}\}$ such that for all x satisfying $|x-c| < \delta$, $|f(x) - f(c)| < \epsilon$, i.e., f is continuous on \mathbb{R}.

As δ depends on both ϵ and c, c is larger and larger, the values of δ is smaller and smaller (as the graph becomes more steeper). There is no such δ that works for all points. In fact, $\inf_c \delta = 0$.

But when we consider only on $[-a, a]$ for $a > 0$. Then

$$|x + c| \leq |x| + |c| \leq 2a,$$

hence $\delta = \epsilon/2a$ works for all points on $[-a, a]$, i.e., f is uniformly continuous on $[-a, a]$.

\[\square \]