1. True or False. Please briefly justify your response.

T F If H is a subgroup of G and H is cyclic, then G is cyclic.
Let $G = \{1, -1, i, -i, j, -j, k, -k\}$ and $H = \{1, -\}$ = $\langle -1 \rangle$.
So H is cyclic, but G is not.

T F If $a \neq e$ and $a^7 = e$, then $|a| = 7$.
If $a^7 = e$, then $|a|$ divides 7. Thus $|a| = 1$ or 7. Since $a \neq e$, $|a| \neq 1$. Thus $|a| = 7$.

T F If $|G| = |G'|$, then G is isomorphic to G'.
Let $G = \mathbb{Z}_4$ and G' = the Klein 4 group. These two groups have the same order, but they are not isomorphic because \mathbb{Z}_4 is cyclic and the Klein 4 group is not.

T F If $\phi : G \rightarrow G'$ is a homomorphism, then $\ker \phi \neq \emptyset$.
Since ϕ is a homomorphism, $\phi(e) = e'$. Thus $e \in \ker \phi$, so $\ker \phi \neq \emptyset$.

2. Let $G = \langle a \rangle$ where $|a| = 15$.

(a) List all elements that generate G.

Generators of G are the elements a^k where $(k, 15) = 1$.
Thus the generators are $a, a^2, a^4, a^7, a^8, a^{11}, a^{13}, a^{14}$.

(b) List all subgroups of G.
The subgroups are the subgroups generated by a^k where k is a positive divisor of 15. Thus the distinct subgroups are:

$$\langle a \rangle = G$$
$$\langle a^3 \rangle = \{e, a^3, a^6, a^9, a^{12}\}$$
$$\langle a^5 \rangle = \{e, a^5, a^{10}\}$$
$$\langle a^{15} \rangle = \{e\}$$

(c) List all elements in G of order 5?

$$|a^k| = \frac{15}{(k, 15)}$$
$$5 = \frac{15}{(k, 15)}$$

$(k, 15) = 3$
$k = 3, 6, 9, 12$

Thus a^3, a^6, a^9 and a^{12} all have order 5.

(d) Are there any elements of order 2 in G? Justify.

If the order of a^k is 2, then we would need $\frac{15}{(k, 15)} = 2$. However, this would imply $(k, 15) = 7.5$ which is a contradiction. Thus G does not contain any elements of order 2.
3. Let \(\phi : G \to G' \) be a homomorphism.

(a) Prove that \(|\phi(a)| \) divides \(|a| \).

Let \(|a| = n \). Then \(a^n = e \). Therefore we have \((\phi(a))^n = \phi(a^n) = \phi(e) = e' \). Since \(\phi(a)^n = e' \), then \(|\phi(a)| \) divides \(n \).

(b) Prove that if \(\phi \) is an isomorphism, then \(|\phi(a)| = |a| \).

Let \(|a| = n \). Since any isomorphism is a homomorphism, we have shown above that \(\phi(a)^n = e' \). Let \(k \) be a positive integer such that \(\phi(a)^k = e' \). Then \(\phi(e') = e \) and \(\phi(a^k) = \phi(a)^k = e' \). Thus \(\phi(a^k) = \phi(e) \) and since \(\phi \) is one to one this implies \(a^k = e \). Since the order of \(a^k \) is \(n \), then \(a^k = e \) implies \(n \leq k \). Thus we have shown that \(n \) is the smallest positive integer such that \(\phi(a)^n = e' \). Hence \(|\phi(a)| = n \).

4. (a) Prove \(U(\mathbb{Z}_{10}) \) is cyclic.

\[U(\mathbb{Z}_{10}) = \{ [1], [3], [7], [9] \}. \]

\[[3]^3 = [27] = [7] \]
\[[3]^4 = [7][3] = [21] = [1] \]

Thus \(|[3]| = 4 \) and so \(\langle [3] \rangle = \{ [1], [3], [3]^2, [3]^3 \} = \{ [1], [3], [7], [9] \} = U(\mathbb{Z}_{10}) \).

(b) Prove or disprove that \(U(\mathbb{Z}_{10}) \) is isomorphic to the Klein Four group.

\(V = \{ e, a, b, c \} \) where \(a^2 = b^2 = c^2 = e \), so \(|a| = |b| = |c| = 2 \). Since \(V \) has no element of order 4, then \(V \) is not cyclic. However, by part (a), \(U(\mathbb{Z}_{10}) \) is cyclic. Thus \(V \) is not isomorphic to \(U(\mathbb{Z}_{10}) \).

5. Prove that any cyclic group of order \(n \) is isomorphic to \(\mathbb{Z}_n \).

Let \(G = \langle a \rangle \). So \(|a| = n \). Define \(\phi : G \to \mathbb{Z}_n \) by \(\phi(a^k) = [k] \).

Let’s first show \(\phi \) is well-defined. Suppose \(a^k = a^l \). Then \(k \equiv l \pmod{\text{\textit{n}}} \) since \(|a| = n \). Thus \([k] = [l] \), and hence \(\phi(a^k) = \phi(a^l) \). Thus \(\phi \) is well-defined.

Now let’s show \(\phi \) is a homomorphism. Let \(a^k, a^l \in G \).

\[\phi(a^ka^l) = \phi(a^{k+l}) = [k+l] = [k] + [l] = \phi(a^k) + \phi(a^l) \]

Thus \(\phi \) is a homomorphism.

Next we’ll show \(\phi \) is one-to-one. Let \(a^k, a^l \in G \) such that \(\phi(a^k) = \phi(a^l) \). Thus \([k] = [l] \) and hence \(k \equiv l \pmod{\text{\textit{n}}} \). Therefore \(a^k = a^l \), so \(\phi \) is one-to-one.

Finally we’ll show \(\phi \) is onto. Let \([k] \in \mathbb{Z}_n \). Then \(a^k \in G \) and \(\phi(a^k) = [k] \). Therefore \(\phi \) is onto.

Thus \(\phi \) is an isomorphism and hence \(G \cong \mathbb{Z}_n \).

6. Let \(\phi : G \to G' \) be a homomorphism.

(a) Prove \(\ker \phi = \{ e \} \) if and only if \(\phi \) is one-to-one.

(\(\Rightarrow \)) Assume \(\ker \phi = \{ e \} \). Let \(a, b \in G \) such that \(\phi(a) = \phi(b) \). Therefore we have the following:

\[\phi(a) = \phi(b) \]
\[\phi(a)\phi(b)^{-1} = e' \]
\[\phi(a)\phi(b^{-1}) = e' \]
\[\phi(ab^{-1}) = e' \]

Thus \(ab^{-1} \in \ker \phi \) and since \(\ker \phi = \{ e \} \) we have that \(ab^{-1} = e \). Multiplying on the right by \(b \) we get \(a = b \). Thus \(\phi \) is one-to-one.
(⇐) Assume \(\phi \) is one-to-one. Since \(\phi \) is a homomorphism, \(\phi(e) = e' \), so \(\{e\} \subseteq \ker \phi \). Let \(a \in \ker \phi \). Then \(\phi(a) = e' = \phi(e) \). Since \(\phi \) is one-to-one, \(a = e \). Thus \(\ker \phi = \{e\} \).

(b) Suppose \(\ker \phi = \{e, g\} \) and \(\phi(a) = b \). Find another element in \(G \) that maps to \(b \).

\[
\phi(ag) = \phi(a)\phi(g) = be' = b
\]

Thus \(ag \in G \) maps to \(b \) and \(ag \neq a \) since \(g \neq e \).