Summary of Partial Differentiation

Let \(z = z(x,y) \) and \(a, c \) are constants

Examples

\(a) \quad z = x^2 + y^2 \) \hspace{1cm} \(d) \quad z = x^2 \)
\(b) \quad z = 3xy \) \hspace{1cm} \(e) \quad z = 3y \)
\(c) \quad z = ax^2 + y/c \) \hspace{1cm} \(f) \quad z = e^{-(x+y)} \)

1) \(\left(\frac{\partial z}{\partial x} \right)_y \) means consider everything but \(x \) constant (i.e. \(y \) is constant) and differentiate with respect to \(x \). The derivative is generally still a function of \(x \) and \(y \).

Examples:

\(a) \quad \left(\frac{\partial z}{\partial x} \right)_y = \left(\frac{\partial (x^2 + y^2)}{\partial x} \right)_y = \left(\frac{\partial x^2}{\partial x} \right)_y + \left(\frac{\partial y^2}{\partial x} \right)_y = 2x \)

\(b) \quad \left(\frac{\partial z}{\partial x} \right)_y = \left(\frac{\partial (3xy)}{\partial x} \right)_y = 3y \left(\frac{\partial x}{\partial x} \right)_y = 3y \)

\(f) \quad \left(\frac{\partial z}{\partial x} \right)_y = -e^{-(x+y)} \) \hspace{1cm} (Note this is still a function of \(x \) and \(y \).)

We can have \(\left(\frac{\partial z}{\partial y} \right)_x \) with analogous meaning:

\(c) \quad \left(\frac{\partial z}{\partial y} \right)_x = 1/c \) \hspace{1cm} \(d) \quad \left(\frac{\partial z}{\partial y} \right)_x = 0 \) \hspace{1cm} \(e) \quad \left(\frac{\partial z}{\partial y} \right)_x = 3 \)

2) The total differential equation of a function, \(z(x,y) \) is:

\[
dz = \left(\frac{\partial z}{\partial x} \right)_y \, dx + \left(\frac{\partial z}{\partial y} \right)_x \, dy
\]
an example from (a)

\[
dz = \left(\frac{\partial (x^2 + y^2)}{\partial x} \right)_y \, dx + \left(\frac{\partial (x^2 + y^2)}{\partial y} \right)_x \, dy
\]

\[= 2x \, dx + 2y \, dy\]

3) Mixed partial derivatives and second partial derivatives:

\[
\left(\frac{\partial^2 z}{\partial x^2} \right)_y = \left[\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right)_y \right]_y
\]

and the same can be said for \(\left(\frac{\partial^2 z}{\partial y^2} \right)_x \)

a) \(\left(\frac{\partial^2 z}{\partial x^2} \right)_y = 2 \)

b) \(\left(\frac{\partial^2 z}{\partial x^2} \right)_y = 0 \)

c) \(\left(\frac{\partial^2 z}{\partial y^2} \right)_x = 0 \)

f) \(\left(\frac{\partial^2 z}{\partial y^2} \right)_x = e^{(x+y)} \)

\[
\frac{\partial^2 z}{\partial x \partial y} = \left[\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right)_x \right]_y \quad \text{with a similar definition for} \quad \frac{\partial^2 z}{\partial y \partial x}
\]

a) \(\frac{\partial^2 z}{\partial x \partial y} = \left[\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right)_x \right]_y = \left[\frac{\partial}{\partial x} (2y) \right]_y = 0 \)

b) \(\frac{\partial^2 z}{\partial x \partial y} = 3 \quad \frac{\partial^2 z}{\partial y \partial x} = 3 \)

Note: The fact that these mixed partial derivatives are equal is NOT a coincidence. It is generally true and a very important fact that,

if \(z = z(x,y) \Rightarrow \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} \)

4) The differential form \(dz = M(x,y) \, dx + N(x,y) \, dy \) is derived from a function \(z = f(x,y) \), i.e.

\[
dz = \left(\frac{\partial z}{\partial x} \right)_y \, dx + \left(\frac{\partial z}{\partial y} \right)_x \, dy = M \, dx + N \, dy
\]

IF AND ONLY IF \(\left(\frac{\partial M}{\partial y} \right)_x = \left(\frac{\partial N}{\partial x} \right)_y \)
Examples: for \(dz = 2xy^2 \, dx + 2yx^2 \, dy \)

\[
M = 2xy^2 \quad \text{and} \quad N = 2yx^2
\]

\[
\left(\frac{\partial M}{\partial y} \right)_x = 4xy \quad \text{and} \quad \left(\frac{\partial N}{\partial x} \right)_y = 4xy
\]
The two partial derivatives are equal!!! Therefore a function, \(z = f(x,y) \) does exist. In fact, for this example, \(z = x^2y^2 \). In this case, the differential equation, \(dz \) is called an **exact differential**.

For \(dz = 2xy \, dx + 2yx^2 \, dy \) \quad M = 2xy \quad \text{and} \quad N = 2yx^2

\[
\left(\frac{\partial M}{\partial y} \right)_x = 2x \quad \text{and} \quad \left(\frac{\partial N}{\partial x} \right)_y = 4xy \quad \text{and} \quad \left(\frac{\partial M}{\partial y} \right)_x \neq \left(\frac{\partial N}{\partial x} \right)_y
\]

Therefore no function, \(z(x,y) \) exists that corresponds with this differential equation. A differential of this type is called an **inexact differential**.

5) An important derivative relationship is the chain rule:

\[
\left(\frac{\partial z}{\partial x} \right) = \left(\frac{\partial z}{\partial u} \right) \left(\frac{\partial u}{\partial x} \right), \text{ Where } u \text{ is a function of } x.
\]

6) In thermodynamics, kinetics and quantum mechanics we rarely use \(x, y, z \) as variables. We use measurable quantities such as enthalpy (H), entropy (S), and concentrations ([A]) and determine how these quantities might vary with other measurable quantities such as: temperature or pressure or time. Therefore you must get used to seeing derivatives, partial derivatives and mixed derivatives in terms of chemical properties.

Examples: a. \(\left(\frac{\partial H}{\partial T} \right)_p \) is defined as how the enthalpy changes with temperature holding pressure constant.

b. \(\left(\frac{\partial G}{\partial P} \right)_{T,n} \) how does the Gibbs energy change with respect to pressure holding temperature and the number of moles constant.
c. \(\frac{\partial^2 A}{\partial V \partial T} = \left[\frac{\partial}{\partial V} \left(\frac{\partial A}{\partial T} \right)_V \right] \) means to take the derivative of \(A \) with respect to \(T \) holding volume constant. Then take that answer, and differentiate with respect to \(V \) holding \(T \) constant.

d. If we have the solution to a partial derivative we can easily express this as a differential equation. For example:

\(\left(\frac{\partial U}{\partial T} \right)_V = C_V \) Where \(U \) is the internal energy of a system and \(C_V \) is the heat capacity at constant volume. Therefore the differential equation may be written as:

\[dU = C_V \, dT \]

7) Below is a list of common derivatives and integrals that we will use throughout this course.

\[\frac{d}{dx}[c]=0 \quad \frac{d}{dx}[x^n]=n \, x^{n-1} \quad \frac{d}{dx}[c \, f(x)]=c \, \frac{d}{dx}[f(x)] \]

\[\frac{d}{dx}[g(x) + f(x)]=\frac{d}{dx}[g(x)] + \frac{d}{dx}[f(x)] \text{, subtraction is done in a similar way.} \]

\[\frac{d}{dx}[e^x]=e^x \quad \frac{d}{dx}[\ln x]=\frac{1}{x} \quad \frac{d}{dx}[g(x) \cdot f(x)]=g(x) \frac{d}{dx}[f(x)] + f(x) \frac{d}{dx}[g(x)] \]

\[\frac{d}{dx}[\sin x]=\cos x \quad \frac{d}{dx}[\cos x]= -\sin x \quad \frac{d}{dx}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) \frac{d}{dx}[f(x)] - f(x) \frac{d}{dx}[g(x)]}{(g(x))^2} \]
5) You should be familiar with integration by u-substitution.

Example:

Evaluate: \[\int 3x^2 \sqrt{x^3 - 1} \, dx \]

-If we let \(u = x^3 - 1 \), then \(du/dx = 3x^2 \)
Therefore \(du = 3x^2 \, dx \), then

\[\int 3x^2 \sqrt{x^3 - 1} \, dx = \int u^{1/2} \, du = \frac{u^{3/2}}{3/2} + C = \frac{2}{3} (x^3 + 1)^{3/2} + C \]
Problems- Partial differentiation

\[z = z(x,y) \text{ and } a, b \text{ are constants.} \]

1. Compute \(\left(\frac{\partial z}{\partial x} \right)_y, \left(\frac{\partial z}{\partial y} \right)_x, \frac{\partial^2 z}{\partial x \partial y}, \frac{\partial^2 z}{\partial y \partial x} \)

 a) \(z = x^2y + 3y \)
 b) \(z = y\ln x + x\ln x \)
 c) \(z = 6x^3 \)
 d) \(z = 5e^x + y \)
 e) \(z = \sqrt{xy} \)

2. a) For \(PV = nRT \), determine \(\left(\frac{\partial V}{\partial T} \right)_p \) directly

 b) \(P = \frac{RT}{V-b} \), solve for \(\left(\frac{\partial P}{\partial V} \right)_T \) and \(\left(\frac{\partial P}{\partial T} \right)_V \), \(R \) and \(b \) are constants

3. Obtain differential equations, \(dz \) of the following:

 a) \(z = 3xy + x^2 \)
 b) \(z = ae^{-x} + ye^x \)
 c) \(z = x^4y^2 + 3x^2y^3 + \cos(ax) \)

4. For each of the differential equations in problem 3, verify that \(\left(\frac{\partial M}{\partial y} \right)_x = \left(\frac{\partial N}{\partial x} \right)_y \) where \(dz = Mdx + Ndy \).

5. Determine which of the following are inexact differentials. Show your work.

 a) \((3x^2)dx + (3y^2x)dy \)
 b) \((2xy)dx + (x^2 + 3)dy \)
 c) \(2xdx + 2ydy \)
 d) \(ye^{-x}dx + xe^{-y}dy \)

6. Using the chain rule, determine the derivative of each of the following functions.

 a) \(z = 4 \cos(x^3) \)

 b) \(z = \sin(x^2 + 9) \)
 c) \(z = e^{x^3} \)
Evaluate the following integrals:

a. \(\int (x^2 + x) \, dx \)

b. \(\int 4 \cos x \, dx \)

c. \(\int -\frac{nRT}{V} \, dV \)

(n,R,T are constant)

d. \(\int_{3}^{10} \left(2x^{3/4}\right) \, dx \)

e. \(\int_{V_1}^{V_2} P \, dV \) (P is constant)

f. \(\int_{V_1}^{V_2} \frac{RT}{V - b} - \frac{a}{V^2} \, dV \)

(a, R,T are constants)

g. \(\int_{0}^{\infty} v^2 e^{-mv^2} \, dv \), m is a constant