1. O'Sullivan Chapter 11: Autos and Highways

Figure 11.1: Modal choice for commuters
Congestion model
- 10 mile two-lane highway
- Private direct cost of auto $0.20 per mile
- Private opportunity cost $0.10 per minute

Figure 11.2: Externality diagram
Social trip cost > private trip cost

Congestion tax
- Determine tax amount based on trip time = f(volume) p. 260
- Benefit: People who continue to use have lower time costs
- Cost: People who stop using forego highway travel
- Total benefits > total costs by welfare triangle (MSC > MPC)

What to do with collected tax revenue?
- Distribute to drivers who no longer use freeway
- Use to expand freeway to eliminate congestion externality
- Put into general fund

Peak vs. off-peak travel
- Figure 11.3
- Range of estimated congestion tax values
- Peak: (SF) 0.65 on urban, 0.21 on suburban, 0.17 on fringe
 (Minn.) 0.09 to 0.21
 (LA) 0.15 average
- Decrease traffic congestion by about 25%

Implement with vehicle identification system
Very limited use: Singapore, Toronto, and London
HOT (high occupancy and toll) lanes: Riverside and San Diego

How taxation reduces congestion
- Modal substitution, time chosen to travel, route of travel, resident choices

Reduce traffic congestion with other alternatives
- Gasoline tax: Increases the cost of all auto travel
- Downtown parking tax: Only on peak-load travelers, no account distance, others cause
- Widen highway
 - Figure 11.4: Is CS gain > cost?
 - Latent demand

Transit subsidies
Figure 11.5
Subsidy never as efficient as highway congestion taxes
Urban road users in U.S. subsidize rural users
Congestion tax and urban land use
Figure 11.8: R_0 to R_c if tax revenue not given back
R_o to R_e if given back
Bid-rent changes around u^*, smaller residential area
Congestion and labor supply
Switch to congestion tax improves net welfare of residents in area
More want to live there and labor supply up
Wages fall, quantity of labor demanded up (more firms)
Congestion taxes cause economic growth, why do we not use them?
Air pollution from autos
Federal Clean Air Acts (1963, 70, 77, and 90)
Regulatory
Economic approach: MSC > MPC of driving
Cause us to drive too polluting cars and too many miles
Effluent fee
Monitoring device
One time charge on new car
Gasoline tax
Small estimates per gallon tax of $0.60 to $1.48
Auto safety
Federal vehicle safety act of 1966
$1,000 increase per car
30% reduction in fatalities, 20,000 lives per year
Theory of risk compensation
Figure 11.10
Switch to small cars
Benefits
Fuels savings, less pollution, less congestion (less space)
Fewer pedestrian/bicycle deaths
People drive more carefully
Costs
Traffic injuries/deaths up (less if all switched)
How to carry our stuff

2. O'Sullivan Chapter 11, Question 4
a. Figure 11.4 with an appropriate shift in D curve.
b. Increases

3. O'Sullivan Chapter 12: Mass Transit
Figure 12.1 and 12.2: U.S. transit use
3 parts of commuting trip
Collection, line haul, and distribution phases
Important facts
 Price elasticity of transit use: -0.33
 Line haul time elasticity: -0.39
 Access time elasticity: -0.71
 Elasticities of demand for noncommuting travel > commuting travel
 Opp. Cost of time spent in transit vehicle at half wage
 Opp. Cost of walking or waiting at 1 to 1.5 of wage

Table 12.2: Total costs for various travel modes
 Change from optimal auto use
 Get her on BART: -$1.21 fare
 Collection, line haul, and distribution times need to drop
 Auto cost and parking cost up
 Wage would fall
 Who uses mass transit?
 Close to stops and stations
 Low opportunity costs
 Enjoys walking
 Dislikes driving
 Cannot afford fixed cost of auto
 Altruistic (It’s the “right” thing to do)

Mainline vs. an integrated system
 Spacing between stations
 HOV lanes
 Greatly reduce line haul times
 Figure 12.3: Impact in non-diamond lanes

Choosing a transportation system
 Auto-based highways, integrated bus system, BART
 Figure 12.4: Average cost curves
 Integrated bus system less expensive (except NY City and Chicago)
 Must exceed 30,000 users per hour
 Metro in DC ($8 fare) LA ($11 fare)

Light rail
 Lower K cost than BART (10 times less per mile)
 Lower L cost than buses, but higher overall operating
 High collection and distribution costs
 Takes passengers off buses
 Table 12.3: Bus cost comparisons

Mass transit subsidies
 Figure 12.5
 Only 38% of operating costs covered by fares
 None of construction costs
 Subsidy reasons
 Declining ATC over potential ridership, must P low to get to
 Used to offset the artificially low priced autos
 Declining fiscal health of mass transit
 Low fares
 High wages
 Extensions to low density areas
Decrease in labor productivity
Policy reforms
 Eliminate cross subsidization of routes
 Beyond scale economies in many situations
 Private contractors (25 to 30%)
 Deregulation: dial-a-ride, jitneys, paratransit, subscriptions
Investment in mass transit only shapes urban land use if used in conjunction
 with land-use instruments

4. O’Sullivan Chapter 12, Question 14

Public education improvements, auto ownership subsidies, jitneys

5. Wassmer Chapter 33: You Ride, I’ll Pay

Article by Pack
Every $ paid by riders, taxpayers pay 2$’s
But + externalities
 Reduced congestion, parking problems, traffic accidents
Simple B/C study of Southeastern PA commuter rail
Table 1
But social benefits not translated into transit revenues
 But do raise property values near stations
 Transit authority buys up land, plans developments
 Greater value-capture efforts
Why not just buy all people using transit a car?

6. Wassmer Chapter 34: Urban Traffic Congestion

Article by Small
New road capacity not always the answer due to latent demand
Time is ripe for congestion pricing
 Promotes a wide variety of alternatives
Federal gov’t conditions it revenue sharing on the fact the state uses peak-load
congestion pricing
 Not just how much too spend, but how to spend it efficiently
People’s likely responses
 Less congestion, carpools easier to arrange, relative wage and property
 value changes, shipping at off hours
 Hit low-income harder (makes it politically difficult)
Political salability rests on how congestion tax revenue distributed
Three equal pots
 Reimburse travelers
 Equal commuting allowance to every worker, cut in fuel taxes
 General tax reduction in local sales and property taxes
 Fund local transportation projects
6. Homework Due the Start of Meeting 9

1) Read all of the material under meeting 9 in the syllabus schedule; come prepared to discuss.
2) One sentence, typed question regarding material that you read for next meeting but do not understand.
3) Answer discussion questions listed under Meeting 9 (November 6) in a typed, double-spaced manner. Two pages should be sufficient to do this.