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Spatial transcriptomics (ST) that was first featured in 2020 [1] can bot
lle the transcriptome of the cells and preserve its spatial informatio
n tissue section. As the technology underwent rapid development |
Nt years, spatial transcriptomics technologies have become primary

N
N

N

tools for biologists to understand cells, their microenvironments [2], tumor
opment [3], and treatment response [4]. However, the technologies are
N early stage where the assays can only measure small regions with
res of cells and are unable to provide single-cell information.

Objectives

We present Single-cell and Spatial transcriptomics Alignment (SSA), a novel
technique that employs an optimal transport algorithm to assign individual
cells from a scRNA-seq atlas to their spatial locations in actual tissue based
on their expression profiles.
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Table 1: Comparisons using average Euclidean distance.

Datasets SSA | SpaoTsc | Tangram | Seurat | DistMap
Dataset-1 1.786 3.007 5.364 11.627 4.624
Dataset-2 1.802 2.977 5.365 12.057 4.718
Dataset-3 1.778 2.952 5.351 11.998 4.534
Dataset-4 1.818 2.955 5.291 11.821 5.345
Dataset-5 1.757 2.970 5.357 12.072 4.519
Dataset-6 1.738 2.944 5.376 11.806 4.804
Dataset-7 1.784 2.955 5.388 12.274 4.989
Dataset-8 1.799 2.991 5.296 11.751 4.484
Dataset-9 1.806 3.076 5.351 11.961 1398.808
Dataset-10 | 1.789 2.939 5.407 12.200 4.502
Table 2: Comparisons using average Manhattan distance.
Datasets SSA | SpaoTsc | Tangram | Seurat | DistMap
Dataset-1 2.259 3.819 6.878 14.769 5.839
Dataset-2 2.277 3. 781 6.874 15.309 5.967
Dataset-3 2.245 3.755 6.862 15.179 5. 727
Dataset-4 2.298 3.7H8 6.771 14.98 6.701
Dataset-5 2.227 3.778 6.858 15.333 5.705
Dataset-6 2.193 3.747 6.895 15.096 6.040
Dataset-7 2.252 3.750 6.925 15.603 6.279
Dataset-8 2.272 5.801 6.797 14.912 5.663
Dataset-9 2.280 3.918 6.858 15.229 1697.566
Dataset-10 | 2.263 3.736 6.930 15.11 5.677

Data: Downloaded dataset contains 100,064 cells with known. We
transform the high-resolution ST data into 01 low-resolution ST dataset
and 10 scRNA-seq datasets.

Metric: Euclidean distance, Manhattan distance, and KL-divergence [5]

Methods: four state-of-the-art methods, SpaOTsc [6], Tangram [7], Seurat [8]
and DistMap [9]

Results: SSA can recover the cells’ spatial
lowest KL-divergence score for each cell type.
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Feature Selection and Data Transformation: Select 5000 genes with the

highest variance and use Z-score transformation to scale and center the data.

Cell to Spot Alignment using Sinkhorn Algorithm:

* Given two X and Y as the scaled scRNA-seqg and ST matrices, we calculate the
pairwise Pearson’s correlation. Then, we calculate the pair wise distance
between cells and spots.

* Given the distance matrix, we will use Sinkhorn algorithm to compute the
optimal transport plan from cells-to-spots. This step involves solving an
optimization problem that seeks to find the “cheapest” way to transport mass
from the cells to the spots, where the “cost” of transporting mass is given by
the distance matrix.

* The output of the Sinkhorn algorithm is a matrix Tmxn where each value
represents the mass of a cell transported to a spot. We then transform it into a
probability matrix with the same dimension and assign cells to spots based on
the maximum probability.
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Conclusion

Outperforms existing state-of-the-art
approaches.

scCAN is the fast method for big data.

scCAN is robust to dropouts.

scCAN is the best method to predict true
number of cell types.

Expanding scan to work with other data types such
as multi-omics data [10].
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