Program Proposal
Form B

<table>
<thead>
<tr>
<th>Academic Group (College):</th>
<th>Date of Submission to College Dean:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Sciences and Mathematics</td>
<td>5/7/2008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Academic Organization (Department):</th>
<th>Requested Effective: Fall__, Spring__X__, 2009__</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>Contact if not Department Chair:</td>
</tr>
<tr>
<td>Department Chair:</td>
<td>Linda Roberts</td>
</tr>
</tbody>
</table>

Title of the Program:
Bachelor of Science in Biochemistry

Type of Program Proposal:

- Modification in Existing Program:
 - Substantive Change
 - Non-Substantive Change
 - Deletion of Existing Program

- New Programs
 - Initiation (Projection) of New Program on to Master Plan
 - New Degree Programs
 - Regular Process
 - Fast Track Process
 - Pilot Process
 - New Minor, Concentration, Option, Specialization, Emphasis
 - New Certificate Program

PLEASE NOTE: Form B is to be used only as a Cover Form. Additional information is requested for each of the above as noted in the corresponding procedure in the Policies and Procedures for Initiation, Modification, Review and Approval of Courses and Academic Programs found at http://www.csus.edu/acaf/univmanual/index.htm

Briefly describe the program proposal (new or change) and provide a justification.

Biochemistry is an expanding area of Chemistry both locally and nationally, the growth of which is reflected in the Sacramento region's burgeoning biotechnology industry. The Chemistry department at CSUS currently offers a BA in Chemistry with Biochemistry concentration (BA/BC). This degree was developed in the early 90's in recognition of the need to incorporate Biochemistry into the Chemistry curriculum. The BA/BC degree is popular, with 40% of Chemistry majors consistently choosing this degree option. We believe the time has come to offer a BS in Biochemistry. Due to its more rigorous content, we believe our graduates will be better prepared for post-graduate study and for industry jobs if they have BS, rather than BA, degrees. In a survey recently conducted of Chemistry and Biology students, nearly 80% of respondents would choose the BS in Biochemistry over the BA in Chemistry with Biochemistry concentration or the BS in Biology. An evaluation of programs around the CSU revealed that our current BA/BC degree is close to those offered within the CSU system for a BS in Biochemistry, and that formulating a new BS Biochemistry degree would require relatively minor changes. The hiring of 4 new biochemistry faculty in the last decade facilitates the offering of this degree. Therefore, we propose to add the BS in Biochemistry as an option for Chemistry students. The main curriculum changes involve the addition of three existing Chemistry courses: upper division organic and physical chemistry labs (CHEM 125 and CHEM 141) and one upper division Chemistry elective. We will retain the three units of upper division Biology electives and add Genetics (BIOL 184) as a required core course. The addition of BIOL 1 and BIOL 2 in place of BIOL 10 reflects changes in the introductory biology offered by the Department of Biological Sciences. The math (MATH 030 and 031) and physics (PHYS 005A and 005B) tracks for the BS Biochemistry will remain the same as those for the BA with Biochemistry concentration.
Approvals:

Department Chair: [Signature] Date: 8/25/08

College Dean: [Signature] Date: 9/3/08

University Committee: Date:

Associate Vice President and Dean for Academic Affairs: Date:

8/27/07
PROPOSAL FOR THE BACHELOR OF SCIENCE DEGREE IN BIOCHEMISTRY
Linda M. Roberts, PhD
Chemistry Department
Spring 2008

1. Complete Form B - see attached.

2. State the purpose of the program.

To provide CSUS students interested in Biochemistry with the opportunity to obtain a Bachelor of Science Degree in Biochemistry. This degree is not intended to replace the existing BA Chemistry with Biochemistry concentration degree but instead allows students to opt for the more rigorous curriculum associated with the BS degree.

3. How does the proposed program fit into the mission of the University and the program responsibility of the College and the academic unit that will offer the program?

The BS Biochemistry degree offers excellent preparation for students entering professional programs, particularly pharmacy and medical school. It also offers excellent preparation for post-graduate study in a multitude of disciplines having Biochemistry as their foundation (biochemistry, biophysics, molecular biology, cell biology, bacteriology, virology, pharmaceutical science, etc.). Finally, it provides excellent preparation for students entering the biotechnology workforce, since students become proficient in their comprehension and handling of all classes of biological molecules. Currently, CSUS does not offer this degree. The Chemistry department does offer a BA Chemistry with Biochemistry concentration (BA/BC). Implementation of the BS Biochemistry degree fulfills both the university's mission and the goals of Destination 2010 because it offers students more rigorous and comprehensive preparation for careers in local industry as well as post-graduate study.

4. Describe the need for the program with respect to student interest, interest in the community and the demand within our service area for graduates of the program.

a. Student interest

A survey was conducted in Spring 2003 of Chemistry and Biology undergraduate and graduate students in nine different courses. (This survey also included questions regarding a proposed Master's in Chemistry with Biochemistry Concentration, which was approved and implemented in 2004). The courses surveyed included the following (*indicates graduate course):

Biol 121 (Cell Physiology)
Biol 181 (Molecular Biology Lab)
Biol 223* (Human Molecular Genetics)
Chem 124 (Organic Chemistry Lecture, second semester)
Chem 140B (Physical Chemistry Lecture, second semester, taken by BS Chem majors)
Chem 161 (General Biochemistry Lecture, taken by Biology majors)
Chem 164 (Advanced Biochemistry Laboratory, capstone course for BA/BC majors)
Chem 231* (Chemical Separations Laboratory)
Chem 260* (Protein Biochemistry)

A total of 156 students responded. 80% of the students surveyed were undergraduates and 20% were graduates in Chemistry or Biology (about 50% from each department). The students were asked the following:

If given the choice, would you opt or would you have opted for the BA/BC or the BS Biochemistry degree?

78% of students answered yes to this question, 17% answered no. This response verifies our perception of a strong desire among students to pursue a BS in Biochemistry. To gauge the level of interest of Chemistry versus Biology students, we asked:

If you are a Biology major, would you have majored in Chemistry if the BS Biochemistry degree had been available?

67% of the respondents said no, 28% said yes and 5% said maybe. While the majority of Biology majors indicated they would not opt for the degree, as many as 33% may have chosen this degree option if had been available.

Since the survey was conducted, interest in the degree has remained very high. Due to the very strong interest in this degree, a number of students have been approaching the Chemistry department for approval to fulfill the curriculum of the proposed degree through the Special Major.

b. **Community interest and demand.**

In spite of the current economy, Biotechnology is booming in the greater Sacramento area as well as the Bay area with established companies such as Genentech expanding operations closer to Sacramento while new companies are being formed at a fast rate. It is critical that we provide our students with high-level, comprehensive, rigorous academic programs in order to increase their competitiveness in securing jobs in this area. Furthermore, a number of government laboratories are located in the Sacramento region, many of them concerned with environmental testing. CSUS is already a recognized leader by these laboratories due to our ability to provide significantly more hands-on laboratory training than our major competitor, UC Davis. The proposed BS Biochemistry curriculum better prepares students for jobs in both areas because it strengthens the Biochemistry core curriculum while increasing and broadening participation in upper division laboratory course work.

5. **Indicate the anticipated student demand for the program. Upon what basis were these estimates derived?**

According to our survey from 2003 (interest has since grown even higher since the survey was conducted), 80% of current BA/BC (~9 graduate per year) and 25% of BS Biology (including only concentrations in Molecular and Microbiology) majors (~25 graduate per year) would opt for the BS Biochemistry degree, giving a projection of 13-14 students in year one. Given the
current rate of increase in graduation from existing programs (~20%), the three and five year projections are 16-17 and 19-20 students, respectively. In terms of overall enrollment in the degree, about 32% of all chemistry majors are expected to enroll (80% of existing BA/BC which currently constitute 40% of the 140-150 students enrolled in Chemistry), giving about 50 students at any time enrolled in the program. Students opting for the BS Chemistry versus the BS Biology degree could increase this enrollment quite significantly.

6. Describe the general scope and content of the proposed program.

The BS Biochemistry expands upon the existing BA/BC degree by strengthening and broadening the curriculum to include genetics (offered by the Department of Biological Sciences), two additional upper division Chemistry laboratories (organic and physical chemistry) and one additional upper division Chemistry elective. The existing Biochemistry core for the BA/BC degree, which includes one year of Biochemistry lecture and one year of Biochemistry lab, is retained in the BS Biochemistry degree. The math and physics tracks are the same as those for the BA/BC degree. The proposed curriculum is listed below:

NOTES:

- No new courses are required for this degree

- These units also fulfill the 12 units of AREA B General Education requirement, bringing the program total to 118-122. Virtually all students opt for the two semester physics sequence (5A and 5B) versus the three semester sequence (11 A, B, C), giving a total of 118 units, which falls within the 120 unit limit for new programs.

Required Lower Division Courses (46-50 units)

(5) CHEM 001A* General Chemistry I (High school algebra [two years] and high school chemistry or equivalent)

(5) CHEM 00B General Chemistry II (CHEM 001A with a passing grade of "C" or better)

(3) CHEM 024 Organic Chemistry Lecture I (CHEM 001B)

(3) CHEM 025 Organic Chemistry Lab I (CHEM 24, CHEM 124 may be taken concurrently)

(4) CHEM 031 Quantitative Analysis (CHEM 001B)

(5) BIO 001 Biodiversity, Evolution and Ecology

(5) BIO 002 Cells, Molecules and Genes (BIO 001, CHEM 001A)

(4) MATH 030 Calculus I (MATH 029 or four years of high school mathematics which includes two years of algebra, one year of geometry, and one year of mathematical analysis; completion of ELM requirement and Pre-Calculus diagnostic tests)

(4) MATH 031 Calculus II (MATH 030 or appropriate high school based AP credit)

(8-12) PHYS 005A General Physics: Mechanics, Heat, Sound (Recently completed three years of high school algebra and geometry; and a college course in algebra and trigonometry) AND

PHYS 005B General Physics: Light, Electricity, and Magnetism, Modern Physics (PHYS 005A or instructor permission) OR

3
PHYS 011A General Physics: Mechanics (MATH 030, MATH 031; or equivalent certificated high school courses. MATH 031 may be taken concurrently) AND
PHYS 011B General Physics: Heat, Light, Sound (MATH 031, PHYS 011A) AND
PHYS 011C General Physics: Electricity and Magnetism, Modern Physics (MATH 031, PHYS 011A)

*Passing a placement exam or obtaining a passing grade of “C” or better in CHEM 004 is required to enroll in CHEM 001A.

Required Upper Division Courses (27 units)

(3) CHEM 124 Organic Chemistry Lecture II (CHEM 024, or instructor permission; concurrent enrollment in CHEM 025 recommended)
(3) CHEM 125 Organic Chemistry Laboratory II (CHEM 025, CHEM 124, ENGL 020 or an equivalent second semester composition course)
(3) CHEM 142 Introduction to Physical Chemistry (CHEM 001B, CHEM 024, PHYS 005A, PHYS 005B, MATH 031)
(3) CHEM 141 Physical Chemistry Laboratory (CHEM 142, ENGL 020 or an equivalent second semester composition course)
(3) CHEM 160A Structure and Function of Biological Molecules (CHEM 124; MATH 026A or MATH 030 is recommended)
(3) CHEM 160B Metabolism and Regulation of Biological Systems (CHEM 160A)
(3) CHEM 162 General Biochemistry Laboratory (CHEM 031; CHEM 160A or CHEM 161, either may be taken concurrently), ENGL 020 or an equivalent second semester composition course)
(3) CHEM 164 Macromolecular Laboratory Techniques (CHEM 162 or equivalent, ENGL 020 or an equivalent second semester composition course)
(3) BIOL 184 Genetics (BIO 002)

Upper Division Elective Courses (6 units)

3 Units of Chemistry Elective (must be from the approved list)

(3) CHEM 110 Inorganic Chemistry Lecture (CHEM 125, CHEM 140B, or CHEM 142 with instructor permission; CHEM 140B may be taken concurrently)
(3) CHEM 133 Chemical Instrumentation (CHEM 031, CHEM 140B or CHEM 142 with instructor permission; ENGL 020 or an equivalent second semester composition course)
(3) CHEM 126 Physical Organic Chemistry Lecture (CHEM 124, CHEM 140B; CHEM 140B may be taken concurrently. Fall only.)
(3) CHEM 128 Organic Synthesis (CHEM 124. Spring only.)
(3) CHEM 198 Senior Research. (One upper division CHEM lab, ENGL 020 or equivalent second semester composition course, and instructor and department chair permission)
(3) CHEM 250 Selected Topics in Chemistry (Enrollment in MS Chemistry graduate program or instructor permission)
(3) CHEM 260 Protein Biochemistry (One semester of biochemistry)
3 Units of Biological Sciences Elective (must be from the approved list):

(3) BIO 121 Cell Physiology (BIO 001 and 002; CHEM 161)
(4) BIO 139 Microbiology (BIO 010 or BIO 020 or BIO 001 and BIO 002; CHEM 020 or CHEM 024)
(4) BIO 144 Pathogenic Bacteriology (BIO 139)
(3) BIO 149A Immunology Lecture (BIO 139, CHEM 161)
(1) BIO 149B Immunology Lab (BIO 139, BIO 149A)
(2) BIO 180 Molecular Biology Lecture (BIO 184. Fall only.)
(2) BIO 181 Molecular Biology Laboratory (BIO139, BIO 184; BIO 180 recommended. Spring only.)
(2) BIO 220 Research Methods in Biological Sciences (Spring only)
(3) BIO 222 Molecular Biology (BIO 184, CHEM 161)

7. Estimate the resources (existing and new) required to operate the proposed program.

Existing Support Resources for the Proposed Degree Major Program:

a. Faculty

See attached table. The addition of four new Biochemistry faculty since 1995, as well as new hires in the Organic and Physical areas facilitates the offering of the degree.

b. Space and facilities

The Dept. of Chemistry is located in Sequoia Hall. Depending on course size, lecture courses in Chemistry are currently taught in several buildings around campus. Chemistry labs are all taught on the fourth floor of Sequoia Hall. The required Biology courses will be taught primarily in Sequoia or Humboldt Halls.

c. Library resources

The library has a reasonable collection of Biochemistry and related books. In addition, the library has on-line access to the major journals students would need for writing reports in the required classes (e.g. *J. of American Chemistry, Biochemistry, Journal of Biological Chemistry*). The library also has a large computer lab for student use.

d. Equipment and other specialized materials currently available.

The Dept. of Chemistry has extensive instrumentation available including a Hewlett- Packard 5890 Series II GC-Mass spectrometer; a Bruker Avance-300 nmr; a Bruker MSL 300MHz wide bore nmr; a Perkin-Elmer 2000 FTIR; a Shimadzu UV-2401 PC spectrometer; an HP 8452A UV-VIS Diode array spectrometer; a Shimadzu, RF-5301PC spectrofluorophotometer; a Beckman L2-50 ultracentrifuge; several Agilent/HPLC systems; an epr spectrometer; a Beckman
HPLC and Capillary Electrophoresis System; a Perkin-Elmer Atomic absorption spectrometer and several gas chromatographs; and many PC workstations.

8. What is the proposed source of funding for the additional resource needs?

Because the new degree program draws from existing courses, no new course development is required. We expect majors to be drawn from the existing BA Chemistry, concentration in Biochemistry degree (~70% according to our survey) and the existing BS Biological Sciences degree (~20-30%). The projected 12.5 WTU's needed per year to offer extra sections of existing courses will be covered by the increased enrollment in these sections.

9. What programmatic or fiscal impact will the proposed program have on the sponsoring unit's programs and other academic units within and outside the host College?

Because existing courses will be used and WTU's of extra sections will be covered by increased enrollment, there is essentially no impact on existing programs in or outside the host College.

10. Summary Statement for Submission to Chancellor's Office

Biochemistry is an expanding area of Chemistry both locally and nationally, the growth of which is reflected in the Sacramento region's burgeoning biotechnology industry. The Chemistry department at CSUS currently offers a BA in Chemistry with Biochemistry concentration (BA/BC). This degree was developed in the early 90's in recognition of the need to incorporate Biochemistry into the Chemistry curriculum. The BA/BC degree is popular, with 40% of Chemistry majors consistently choosing this degree option. We believe the time has come to offer a BS in Biochemistry. Due to its more rigorous content, we believe our graduates will be better prepared for post-graduate study and for industry jobs if they have BS, rather than BA, degrees. In a survey recently conducted of Chemistry and Biology students, nearly 80% of respondents would choose the BS in Biochemistry over the BA in Chemistry with Biochemistry concentration or the BS in Biology. An evaluation of programs around the CSU revealed that our current BA/BC degree is close to those offered within the CSU system for a BS in Biochemistry, and that formulating a new BS Biochemistry degree would require relatively minor changes. The hiring of 4 new biochemistry faculty in the last decade facilitates the offering of this degree. Therefore, we propose to add the BS in Biochemistry as an option for Chemistry students. The main curriculum changes involve the addition of three existing Chemistry courses: upper division organic and physical chemistry labs (CHEM 125 and CHEM 141) and one upper division Chemistry elective. We will retain the three units of upper division Biology electives and add Genetics (BIOL 184) as a required core course. The addition of BIOL 1 and BIOL 2 in place of BIOL 10 reflects changes in the introductory biology offered by the Department of Biological Sciences. The math (MATH 030 and 031) and physics (PHYS 005A and 005B) tracks for the BS Biochemistry will remain the same as those for the BA with Biochemistry concentration.
<table>
<thead>
<tr>
<th>Name</th>
<th>Rank</th>
<th>Status</th>
<th>Degree</th>
<th>Specialization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baker, Brad</td>
<td>Lecturer 2004</td>
<td>Employed 2004</td>
<td>PhD</td>
<td>Analytical</td>
</tr>
<tr>
<td>Crawford, Susan</td>
<td>Instructor 1998, Assistant 2004</td>
<td>Employed 1998</td>
<td>PhD</td>
<td>Physical</td>
</tr>
<tr>
<td>Dixon, Roy</td>
<td>Associate 2000, Professor 2000</td>
<td>Employed 2000</td>
<td>PhD</td>
<td>Analytical</td>
</tr>
<tr>
<td>Feazell, Rodney</td>
<td>Assistant 2007</td>
<td>Employed 2007</td>
<td>PhD</td>
<td>Inorganic</td>
</tr>
<tr>
<td>Gherman, Ben</td>
<td>Professor 2006</td>
<td>Employed 2006</td>
<td>PhD</td>
<td>Physical</td>
</tr>
<tr>
<td>Kellen-Yuen, Cynthia</td>
<td>Assistant 2001, Instructor 2006</td>
<td>Employed 1999</td>
<td>PhD</td>
<td>Organic</td>
</tr>
<tr>
<td>Mack, Jeff</td>
<td>2005</td>
<td>Employed 2005</td>
<td>PhD</td>
<td>Physical</td>
</tr>
<tr>
<td>McReynolds, Kathie</td>
<td>2007</td>
<td>Employed 2001</td>
<td>PhD</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>Miranda, James</td>
<td>2006</td>
<td>Employed 2006</td>
<td>PhD</td>
<td>Organic</td>
</tr>
<tr>
<td>Paradis, Jeff</td>
<td>2002, Instructor 2007</td>
<td>Employed 2002</td>
<td>PhD</td>
<td>Science Education</td>
</tr>
<tr>
<td>Savage, Tom</td>
<td>2004</td>
<td>Employed 2004</td>
<td>PhD</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>Spence, John</td>
<td>2004</td>
<td>Employed 2004</td>
<td>PhD</td>
<td>Organic</td>
</tr>
</tbody>
</table>
PROPOSAL FOR THE BACHELOR OF SCIENCE DEGREE IN BIOCHEMISTRY
Linda M. Roberts, PhD
Chemistry Department
Spring 2008

1. **Complete Form B** - see attached.

2. **Definition of the Proposed Degree Major Program.**

a. **Campus:** Sacramento
 Degree terminology: Bachelor of Science in Biochemistry
 Intended implementation: Fall, 2009

b. **Department:** Chemistry
 Contact: Linda Roberts

c. **Proposer:** Linda M. Roberts, PhD, Associate Professor of Chemistry

d. **Objectives:**
 To provide CSUS students interested in Biochemistry with the opportunity to obtain a Bachelor of Science Degree in Biochemistry. This degree is not intended to replace the existing BA Chemistry with Biochemistry concentration degree but instead allows students to opt for the more rigorous curriculum associated with the BS degree.

e. **Total number of units required for the major:** 79-83

 Note: These units also fulfill the 12 units of AREA B General Education requirement, bringing the program total to 118-122. Virtually all students opt for the two semester physics sequence (5A and 5B) versus the three semester sequence (11 A, B, C), giving a total of 118 units, which falls within the 120 unit limit for new programs.

 List of required courses (note: NO NEW COURSES are required)

Required Lower Division Courses (46-50 units)
(5) CHEM 001A* General Chemistry I (High school algebra [two years] and high school chemistry or equivalent)
(5) CHEM 001B General Chemistry II (CHEM 001A with a passing grade of "C" or better)
(3) CHEM 024 Organic Chemistry Lecture I (CHEM 001B)
(3) CHEM 025 Organic Chemistry Lab I (CHEM 24, CHEM 124 may be taken concurrently)
(4) CHEM 031 Quantitative Analysis (CHEM 001B)
(5) BIO 001 Biodiversity, Evolution and Ecology
(5) BIO 002 Cells, Molecules and Genes (BIO 001, CHEM 001A)
(4) MATH 030 Calculus I (MATH 029 or four years of high school mathematics which includes two years of algebra, one year of geometry, and one year of
mathematical analysis; completion of ELM requirement and Pre-Calculus
diagnostic tests)
(4) MATH 031 Calculus II (MATH 030 or appropriate high school based AP credit)
(8-12) PHYS 005A General Physics: Mechanics, Heat, Sound (Recently completed three years
of high school algebra and geometry; and a college course in algebra and
trigonometry) AND
PHYS 005B General Physics: Light, Electricity, and Magnetism, Modern Physics
(PHYS 005A or instructor permission) OR
PHYS 011A General Physics: Mechanics (MATH 030, MATH 031; or equivalent
certificated high school courses. MATH 031 may be taken concurrently)
AND
PHYS 011B General Physics: Heat, Light, Sound (MATH 031, PHYS 011A) AND
PHYS 011C General Physics: Electricity and Magnetism, Modern Physics (MATH
031, PHYS 011A)
*Passing a placement exam or obtaining a passing grade of “C” or better in CHEM 004 is
required to enroll in CHEM 001A.

Required Upper Division Courses (27 units)
(3) CHEM 124 Organic Chemistry Lecture II (CHEM 024, or instructor permission;
concurrent enrollment in CHEM 025 recommended)
(3) CHEM 125 Organic Chemistry Laboratory II (CHEM 025, CHEM 124, ENGL 020 or
an equivalent second semester composition course)
(3) CHEM 142 Introduction to Physical Chemistry (CHEM 001B, CHEM 024, PHYS
005A, PHYS 005B, MATH 031)
(3) CHEM 141 Physical Chemistry Laboratory (CHEM 142, ENGL 020 or an equivalent
second semester composition course)
(3) CHEM 160A Structure and Function of Biological Molecules (CHEM 124; MATH
026A or MATH 030 is recommended)
(3) CHEM 160B Metabolism and Regulation of Biological Systems (CHEM 160A)
(3) CHEM 162 General Biochemistry Laboratory (CHEM 031; CHEM 160A or CHEM
161, either may be taken concurrently), ENGL 020 or an equivalent
second semester composition course)
(3) CHEM 164 Macromolecular Laboratory Techniques (CHEM 162 or equivalent,
ENGL 020 or an equivalent second semester composition course)
(3) BIOL 184 Genetics (BIO 002)

f. List of Elective courses: (note: NO NEW COURSES required)

Upper Division Elective Courses (6 units)
3 Units of Chemistry Elective (must be from the approved list)
(3) CHEM 110 Inorganic Chemistry Lecture (CHEM 125, CHEM 140B, or CHEM 142
with instructor permission; CHEM 140B may be taken concurrentl
(3) CHEM 133 Chemical Instrumentation (CHEM 031, CHEM 140B or CHEM 142 with instructor permission; ENGL 020 or an equivalent second semester composition course)
(3) CHEM 126 Physical Organic Chemistry Lecture (CHEM 124, CHEM 140B; CHEM 140B may be taken concurrently. Fall only.)
(3) CHEM 128 Organic Synthesis (CHEM 124. Spring only.)
(3) CHEM 198 Senior Research. (One upper division CHEM lab, ENGL 020 or equivalent second semester composition course, and instructor and department chair permission)
(3) CHEM 250 Selected Topics in Chemistry (Enrollment in MS Chemistry graduate program or instructor permission)
(3) CHEM 260 Protein Biochemistry (One semester of biochemistry)
(3) CHEM 261 Nucleic acid chemistry (Undergraduate course in biochemistry)

3 Units of Biological Sciences Elective (must be from the approved list):

(3) BIO 121 Cell Physiology (BIO 001 and 002; CHEM 161)
(4) BIO 139 Microbiology (BIO 010 or BIO 020 or BIO 001 and BIO 002; CHEM 020 or CHEM 024)
(4) BIO 144 Pathogenic Bacteriology (BIO 139)
(3) BIO 149A Immunology Lecture (BIO 139, CHEM 161)
(1) BIO 149B Immunology Lab (BIO 139, BIO 149A)
(2) BIO 180 Molecular Biology Lecture (BIO 184. Fall only.)
(2) BIO 181 Molecular Biology Laboratory (BIO139, BIO 184; BIO 180 recommended. Spring only.)
(2) BIO 220 Research Methods in Biological Sciences (Spring only)
(3) BIO 222 Molecular Biology (BIO 184, CHEM 161)

g. Formal options, concentrations, etc.: none planned.

h. Course prerequisites and criteria for admission or continuation in the proposed program:

Prerequisites for individual courses are listed above. The prerequisite policy of the Chemistry department is as follows: "When enrolling in a course, it is required that the student will have met the specific prerequisites listed. A course listed as prerequisite may have its own set of prerequisites. All must be met prior to enrolling in a chemistry course. Students not meeting the prerequisite requirements for a course will be administratively removed from the class."

A minimum grade of "C-" is required in all courses applied to the Chemistry major. Grades below "C-" in prerequisite courses do not satisfy prerequisite requirements.

i. Explanation of special characteristics: not applicable.

j. Articulation with community college programs: since all courses now exist, current articulations will be applied.
k. **Provision for meeting accreditation requirements:** curriculum meets American Chemical Society guidelines for BS in Biochemistry: physical chemistry lab (Chem 141), organic chemistry synthesis (Chem 125), 3 units UD biology, 6 units UD biochemistry lecture (Chem 160A and 160 B), 3 units UD biochemistry lab (Chem 162), research w/written report (Chem 164).

3. **Need for the Proposed Degree Major Program**

a. **List of nearby institutions offering BS Biochemistry degree:**
 - San Francisco State University
 - CSU Chico
 - UC Davis (BS Biochemistry and Molecular Biology)

b. **Differences between the proposed program and those listed above:**
 - SFSSU: Physical chemistry, advanced organic chemistry and advanced biochemistry labs are elective courses; upper division electives are weighted towards Biology but elective choices are similar.
 - CSU Chico: Inorganic chemistry lecture, an integrated upper division laboratory and senior seminar are required courses; advanced biochemistry lab is an elective; elective choices are similar.
 - UC Davis: Physical chemistry lab is an elective; upper division requirements in chemistry and biology are similar to proposed program.

Although similar programs exist regionally, we believe offering a BS Biochemistry at CSUS will serve the many students on our campus who have family obligations in Sacramento requiring them to stay here for their education. Furthermore, the close interactions between students and faculty and the hands-on work with sophisticated instrumentation that students experience in our program are attractive features not offered at larger institutions such as UC Davis. Many of our students, who are non-traditional learners, also benefit from the teaching styles offered in our department.

c. **List of other related curricula (at CSUS):**
 - BS Chemistry
 - BA Chemistry
 - BA, Biochemistry concentration
 - BA, Forensics concentration

d. **Results of formal survey:**

A survey was conducted in Spring 2003 of Chemistry and Biology undergraduate and graduate students in nine different courses. (This survey also included questions regarding a proposed Master's in Chemistry with Biochemistry Concentration, which was approved and implemented in 2004). The courses surveyed included the following (*indicates graduate course):

Biol 121 (Cell Physiology)
Biol 181 (Molecular Biology Lab)
Biol 223* (Human Molecular Genetics)
Chem 124 (Organic Chemistry Lecture, second semester)
Chem 140B (Physical Chemistry Lecture, second semester, taken by BS Chem majors)
Chem 161 (General Biochemistry Lecture, taken by Biology majors)
Chem 164 (Advanced Biochemistry Laboratory, capstone course for BA/BC majors)
Chem 231* (Chemical Separations Laboratory)
Chem 260* (Protein Biochemistry)

A total of 156 students responded. 80% of the students surveyed were undergraduates and 20% were graduates in Chemistry or Biology (about 50% from each department). The students were asked the following:

If given the choice, would you opt or would you have opted for the BA/BC or the BS Biochemistry degree?

78% of students answered yes to this question, 17% answered no. This response verifies our perception of a strong desire among students to pursue a BS in Biochemistry. To gauge the level of interest of Chemistry versus Biology students, we asked:

If you are a Biology major, would you have majored in Chemistry if the BS Biochemistry degree had been available?

67% of the respondents said no, 28% said yes and 5% said maybe. While the majority of Biology majors indicated they would not opt for the degree, as many as 33% may have chosen this degree option if had been available.

e. For graduate programs…: Not applicable.

f. Professional uses of the proposed degree major program:
 Career possibilities: Biochemist, Biotechnologist, Dentistry, Pharmacy, Medicine, Veterinary Medicine, Pharmaceutical chemistry, Food Technology, Technical Sales Representative, Patent Law, Environmental Quality Regulation.

g. Expected number of majors in years 1, 3, and 5 and expected number of graduates in years 1, 3, 5:

 According to our survey, 80% of current BA Chemistry, concentration Biochemistry majors (~9 graduate per year) and 25% of BS Biology (including only concentrations in Molecular and Microbiology) majors (~25 graduate per year) would opt for the BS Biochemistry degree, giving a projection of 13 students in year one. Given the current rate of increase in graduation from existing programs (~20%), the three and five year projections are 16 and 19 students, respectively.
In terms of enrollment, according to enrollment data for 2002-2006, about 140-150 juniors and seniors are enrolled at any given time. 40% (56-60) of these are Biochemistry concentration majors. Taking into account the survey results, this translates into about 60 majors per year.

4. Existing Support Resources for the Proposed Degree Major Program:

a. Faculty

See attached table.

b. Space and facilities

The Dept. of Chemistry is located in Sequoia Hall. Depending on course size, lecture courses in Chemistry are currently taught in several buildings around campus. Chemistry labs are all taught on the fourth floor of Sequoia Hall. The required Biology courses will be taught primarily in Sequoia or Humboldt Halls.

c. Library resources

The library has a reasonable collection of Biochemistry and related books. In addition, the library has on-line access to the major journals students would need for writing reports in the required classes (e.g. *J. of American Chemistry*, *Biochemistry*, *Journal of Biological Chemistry*). The library also has a large computer lab for student use.

d. Equipment and other specialized materials currently available.

The Dept. of Chemistry has extensive instrumentation available including a Hewlett- Packard 5890 Series II GC-Mass spectrometer; a Bruker Avance-300 nmr; a Bruker MSL 300MHz wide bore nmr; a Perkin-Elmer 2000 FTIR; a Shimadzu UV-2401 PC spectrometer; an HP 8452A UV-VIS Diode array spectrometer; a Shimadzu, RF-5301PC spectrofluorophotometer; a Beckman L2-50 ultracentrifuge; several Agilent/HPLC systems; an epr spectrometer; a Beckman HPLC and Capillary Electrophoresis System; a Perkin-Elmer Atomic absorption spectrometer and several gas chromatographs; and many PC workstations.

5. Additional Support Sources.

Because the new degree program draws from existing courses, no new course development is required. We expect majors to be drawn from the existing BA Chemistry, concentration in Biochemistry degree (~70% according to our survey) and the existing BS Biological Sciences degree (~20-30%). The projected 12.5 WTU's needed per year to offer extra sections of existing courses will be covered by the increased enrollment in these sections.

a. Form C (not completed; optional for fast track)

b. Special characteristics of additional faculty or staff support positions: none needed.
c. **Amount of additional lecture or laboratory space for the next five years:** none needed. Addition of 2 lab sections every year and 1 lab section every other year can be offered in existing space.

d. **Additional library resources needed:** none.

6. **Abstract of the Proposal and Proposed Catalog Description.**

ABSTRACT
Biochemistry is an expanding area of Chemistry both locally and nationally the growth of which is reflected in the Sacramento region's burgeoning biotechnology industry. The Chemistry department at CSUS currently offers a BA in Chemistry with Biochemistry concentration (BA/BC). This degree was developed in the early 90's in recognition of the need to incorporate Biochemistry into the Chemistry curriculum. The BA/BC degree is popular, with 40% of Chemistry majors consistently choosing this degree option. We believe the time has come to offer a BS in Biochemistry. Due to its more rigorous content, we believe our graduates will be better prepared for post-graduate study and for industry jobs, if they have BS, rather than BA, degrees. An evaluation of programs around the CSU revealed that our current BA/BC degree is close to those offered within the CSU system for a BS in Biochemistry, and that formulating a new BS Biochemistry degree would require relatively minor changes. The hiring of 4 new biochemistry faculty in the last decade facilitates the offering of this degree. Therefore, we propose to add the BS in Biochemistry as a choice for Chemistry students as described below.

CATALOG DESCRIPTION

Program Description: The BS in Biochemistry provides students with rigorous in-depth preparation for careers in industry (for example, biotechnology, pharmacology, environmental chemistry) and for post-graduate studies in a variety of fields including biochemistry, biophysics, molecular biology, cell biology. It also provides excellent preparation for pre-professional students planning careers in dentistry, medicine, pharmacy, and related fields.