# Appendix C

# Noise Modeling Calculations



#### **Site Preparation**

|             |                     |                                   |                  | Reference Emission                     |                     |
|-------------|---------------------|-----------------------------------|------------------|----------------------------------------|---------------------|
|             | Distance to Nearest | <b>Combined Predicted</b>         |                  | Noise Levels (L <sub>max</sub> ) at 50 | Usage               |
| Location    | Receptor in feet    | Noise Level (L <sub>eq</sub> dBA) | Equipment        | feet <sup>1</sup>                      | Factor <sup>1</sup> |
| Threshold   | 1,218               | 50.0                              | Dozer            | 85                                     | 0.4                 |
| Residence 1 | 1550                | 45.4                              | Front End Loader | 80                                     | 0.4                 |
| Residence 2 | 1890                | 43.1                              | Excavator        | 85                                     | 0.4                 |

| Ground Type                | Soft |
|----------------------------|------|
| Source Height              | 8    |
| Receiver Height            | 5    |
| Ground Factor <sup>2</sup> | 0.63 |

| Predicted Noise Level <sup>3</sup> | L <sub>eq</sub> dBA at 50 feet <sup>3</sup> |
|------------------------------------|---------------------------------------------|
| Dozer                              | 81.0                                        |
| Front End Loader                   | 76.0                                        |
| Excavator                          | 81.0                                        |

Combined Predicted Noise Level (L<sub>eq</sub> dBA at 50 feet) 84.7

Sources:

<sup>1</sup>Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

<sup>2</sup> Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

<sup>3</sup> Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$ 

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and



#### **Site Preparation**

|             | Distance to Nearest | Combined Predicted                |                  | Reference Emission<br>Noise Levels (L <sub>max</sub> ) at 50 | Usage               |
|-------------|---------------------|-----------------------------------|------------------|--------------------------------------------------------------|---------------------|
| Location    | Receptor in feet    | Noise Level (L <sub>eq</sub> dBA) | Equipment        | feet <sup>1</sup>                                            | Factor <sup>1</sup> |
| Threshold   | 1,725               | 50.0                              | Dump Truck       | 84                                                           | 1                   |
| Residence 1 | 25                  | 96.4                              | Chain Saw        | 85                                                           | 1                   |
| Residence 2 | 50                  | 88.4                              | Front End Loader | 80                                                           | 1                   |
|             |                     |                                   | chipper          | 75                                                           | 1                   |

| Ground Type                | Soft |
|----------------------------|------|
| Source Height              | 8    |
| Receiver Height            | 5    |
| Ground Factor <sup>2</sup> | 0.63 |

| Predicted Noise Level <sup>3</sup> | L <sub>eq</sub> dBA at 50 feet <sup>3</sup> |
|------------------------------------|---------------------------------------------|
| Dump Truck                         | 84.0                                        |
| Chain Saw                          | 85.0                                        |
| Front End Loader                   | 80.0                                        |
| chipper                            | 75.0                                        |

Combined Predicted Noise Level ( $L_{eq}$  dBA at 50 feet)

88.4

Sources:

<sup>1</sup>Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

<sup>2</sup> Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

<sup>3</sup> Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$ 

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and



#### Night Cable Crossing Equipment

|                    |                     |                                   |            | Reference Emission                     |                     |
|--------------------|---------------------|-----------------------------------|------------|----------------------------------------|---------------------|
|                    | Distance to Nearest | <b>Combined Predicted</b>         |            | Noise Levels (L <sub>max</sub> ) at 50 | Usage               |
| Location           | Receptor in feet    | Noise Level (L <sub>eg</sub> dBA) | Equipment  | feet <sup>1</sup>                      | Factor <sup>1</sup> |
| Threshold          | 851,781             |                                   | Dozer      | 85                                     | 0.2                 |
| SF Base Term. Res. | 50                  | 84.6                              | Dump Truck | 84                                     | 0.4                 |
| Residence 2        | 75                  | 81.1                              | Excavator  | 85                                     | 0.4                 |

| Ground Type                | hard |
|----------------------------|------|
| Source Height              | 8    |
| Receiver Height            | 5    |
| Ground Factor <sup>2</sup> | 0.00 |

| Predicted Noise Level <sup>3</sup> | L <sub>eq</sub> dBA at 50 feet <sup>3</sup> |
|------------------------------------|---------------------------------------------|
| Dozer                              | 78.0                                        |
| Dump Truck                         | 80.0                                        |
| Excavator                          | 81.0                                        |

Combined Predicted Noise Level (L<sub>eq</sub> dBA at 50 feet)

85

Sources:

 $^{\rm 1}$  Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

<sup>2</sup> Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

<sup>3</sup> Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$ 

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and



#### Night Cable Crossing Equipment

|                     |                     |                                   |                  | Reference Emission                     |                     |
|---------------------|---------------------|-----------------------------------|------------------|----------------------------------------|---------------------|
|                     | Distance to Nearest | <b>Combined Predicted</b>         |                  | Noise Levels (L <sub>max</sub> ) at 50 | Usage               |
| Location            | Receptor in feet    | Noise Level (L <sub>eq</sub> dBA) | Equipment        | feet <sup>1</sup>                      | Factor <sup>1</sup> |
| Threshold           | 301                 | 70.0                              | Excavator        | 85                                     | 1                   |
| SF Term. Residence. | 175                 | 75.2                              | Grader           | 85                                     | 1                   |
| Residence 2         | 1500                | 50.6                              | Pickup Truck     | 55                                     | 1                   |
|                     |                     |                                   | Front End Loader | 80                                     | 1                   |
|                     |                     |                                   | Generator        | 82                                     | 1                   |

| Ground Type                | soft |
|----------------------------|------|
| Source Height              | 8    |
| Receiver Height            | 5    |
| Ground Factor <sup>2</sup> | 0.63 |

| Predicted Noise Level <sup>3</sup> | L <sub>eq</sub> dBA at 50 feet <sup>3</sup> |
|------------------------------------|---------------------------------------------|
| Excavator                          | 85.0                                        |
| Grader                             | 85.0                                        |
| Pickup Truck                       | 55.0                                        |
| Front End Loader                   | 80.0                                        |
| Generator                          | 82.0                                        |

Combined Predicted Noise Level (L<sub>eq</sub> dBA at 50 feet)

90

Sources:

 $^{\rm 1}$  Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

<sup>2</sup> Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

<sup>3</sup> Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$ 

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and



#### Day Cable Crossing Equipment (no helicopter)

|             |                     |                                   |                     | Reference Emission                     |                     |
|-------------|---------------------|-----------------------------------|---------------------|----------------------------------------|---------------------|
|             | Distance to Nearest | <b>Combined Predicted</b>         |                     | Noise Levels (L <sub>max</sub> ) at 50 | Usage               |
| Location    | Receptor in feet    | Noise Level (L <sub>eq</sub> dBA) | Equipment           | feet <sup>1</sup>                      | Factor <sup>1</sup> |
| Threshold   | #VALUE!             | 50.0                              | Crane               | 85                                     | 0.16                |
| Residence 1 | 600                 | #VALUE!                           | Blasting            | 94                                     | #VALUE!             |
| Residence 2 | 100                 | #VALUE!                           | Pickup Truck        | 55                                     | 0.4                 |
|             | T                   |                                   | Rock Drill          | 85                                     | 0.2                 |
|             |                     |                                   | Concrete Pump Truck | 82                                     | 0.2                 |
|             |                     |                                   | Generator           | 82                                     | 0.5                 |

| Ground Type                | soft |
|----------------------------|------|
| Source Height              | 8    |
| Receiver Height            | 5    |
| Ground Factor <sup>2</sup> | 0.63 |

| Predicted Noise Level <sup>3</sup> | L <sub>eq</sub> dBA at 50 feet <sup>3</sup> |
|------------------------------------|---------------------------------------------|
| Crane                              | 77.0                                        |
| Blasting                           | #VALUE!                                     |
| Pickup Truck                       | 51.0                                        |
| Rock Drill                         | 78.0                                        |
| Concrete Pump Truck                | 75.0                                        |
| Generator                          | 79.0                                        |

Combined Predicted Noise Level (L<sub>eq</sub> dBA at 50 feet)

#VALUE!

Sources:

<sup>1</sup>Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

<sup>2</sup> Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

<sup>3</sup> Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$ 

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and



#### Day Cable Crossing Equipment (no helicopter)

|             |                     |                                   |                     | Reference Emission                     |                     |
|-------------|---------------------|-----------------------------------|---------------------|----------------------------------------|---------------------|
|             | Distance to Nearest | <b>Combined Predicted</b>         |                     | Noise Levels (L <sub>max</sub> ) at 50 | Usage               |
| Location    | Receptor in feet    | Noise Level (L <sub>eq</sub> dBA) | Equipment           | feet <sup>1</sup>                      | Factor <sup>1</sup> |
| Threshold   | 1,901               | 50.0                              | Crane               | 85                                     | 1                   |
| Residence 1 | 100                 | 81.6                              | Backhoe             | 80                                     | 1                   |
| Residence 2 | 100                 | 81.6                              | Pickup Truck        | 55                                     | 1                   |
|             | T                   |                                   | Rock Drill          | 85                                     | 1                   |
|             |                     |                                   | Concrete Pump Truck | 82                                     | 1                   |
|             |                     |                                   | Generator           | 82                                     | 1                   |

| Ground Type                | soft |
|----------------------------|------|
| Source Height              | 8    |
| Receiver Height            | 5    |
| Ground Factor <sup>2</sup> | 0.63 |

| Predicted Noise Level <sup>3</sup> | L <sub>eq</sub> dBA at 50 feet <sup>3</sup> |
|------------------------------------|---------------------------------------------|
| Crane                              | 85.0                                        |
| Backhoe                            | 80.0                                        |
| Pickup Truck                       | 55.0                                        |
| Rock Drill                         | 85.0                                        |
| Concrete Pump Truck                | 82.0                                        |
| Generator                          | 82.0                                        |

Combined Predicted Noise Level (L<sub>eq</sub> dBA at 50 feet)

89.5

Sources:

<sup>1</sup>Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

<sup>2</sup> Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

<sup>3</sup> Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$ 

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and



#### **Attenuation Calculations for Stationary Noise Sources**

**KEY:** Orange cells are for input.

Grey cells are intermediate calculations performed by the model.

Green cells are data to present in a written analysis (output).

STEP 1: Identify the noise source and enter the reference noise level (dBA and distance).

STEP 2: Select the ground type (hard or soft), and enter the source and receiver heights.

**STEP 3: Select the distance to the receiver.** 

| Noise Source/ID        | Reference   | e Noi | se Level | Attenuation Characteristics |             |             |        |  | Attenuated Noise Level at Recept |   |          |  |
|------------------------|-------------|-------|----------|-----------------------------|-------------|-------------|--------|--|----------------------------------|---|----------|--|
|                        | noise level |       | distance | Ground Type                 | Source      | Receiver    | Ground |  | noise leve                       | I | distance |  |
|                        | (dBA)       | @     | (ft)     | (soft/hard)                 | Height (ft) | Height (ft) | Factor |  | (dBA)                            | @ | (ft)     |  |
| Helicopter             | 68.0        | @     | 492      | soft                        | 6           | 5           | 0.65   |  | 94.3                             | @ | 50       |  |
| chipper                | 99.0        | @     | 3        | soft                        | 6           | 5           | 0.65   |  | 67.7                             | @ | 50       |  |
| blasting (night Imax)  | 94.0        | @     | 50       | soft                        | 6           | 5           | 0.65   |  | 65.0                             | @ | 620      |  |
| helicopter (night leq) | 68.0        | @     | 492.00   | soft                        | 6           | 5           | 0.65   |  | 45.1                             | @ | 3600     |  |
| blasting (day Imax)    | 94.0        | @     | 50       | soft                        | 6           | 5           | 0.65   |  | 70.1                             | @ | 400      |  |
| helicopter (day leq)   | 68.0        | @     | 492      | soft                        | 6           | 5           | 0.65   |  | 55.0                             | @ | 1520     |  |
| Blasting (SF Res)      | 94.0        | @     | 50       | soft                        | 6           | 5           | 0.65   |  | 79.6                             | @ | 175      |  |
| blasting               | 94.0        | @     | 50       | soft                        | 6           | 5           | 0.65   |  | 86.0                             | @ | 100      |  |
| construction           | 85.0        | @     | 50       | soft                        | 6           | 5           | 0.65   |  | 93.0                             | @ | 25       |  |
| construction           | 95.0        | @     | 50       | soft                        | 6           | 5           | 0.65   |  | 103.0                            | @ | 25       |  |
|                        |             |       |          |                             |             |             | 0.66   |  |                                  |   |          |  |
|                        |             |       |          |                             |             |             | 0.66   |  |                                  |   |          |  |
|                        |             |       |          |                             |             |             | 0.66   |  |                                  |   |          |  |
|                        |             |       |          |                             |             |             | 0.66   |  |                                  |   |          |  |

Notes:

Estimates of attenuated noise levels do not account for reductions from intervening barriers, including walls, trees, vegetation, or structures of any type.

Computation of the attenuated noise level is based on the equation presented on pg. 12-3 and 12-4 of FTA 2006.

Computation of the ground factor is based on the equation presentd in Figure 6-23 on pg. 6-23 of FTA 2006, where the distance of the reference noise leve can be adjusted and the usage factor is not applied (i.e., the usage factor is equal to 1).

#### Sources:

Federal Transit Association (FTA). 2006 (May). Transit Noise and Vibration Impact Assessment. FTA-VA-90-1003-06. Washington, D.C. Available: <a href="http://www.fta.dot.gov/documents/FTA\_Noise\_and\_Vibration\_Manual.pdf">http://www.fta.dot.gov/documents/FTA\_Noise\_and\_Vibration\_Manual.pdf</a>>. Accessed: September 24, 2010.

|                                 |            | Spec      | Actual           | No. of  |          |         |          |              |          |
|---------------------------------|------------|-----------|------------------|---------|----------|---------|----------|--------------|----------|
|                                 | Acoustical | 721.560   | Measured         | Actual  | Spec     | Spec    |          | Actual       | Actual   |
|                                 | Usage      | Lmax @    | Lmax @           | Data    | 721.560  | 721.560 | Distance | Measured     | Measured |
|                                 | Factor (%) | 50ft (dBA | 50ft             | Samples | LmaxCalc | Leq     |          | LmaxCalc     | Leq      |
| Equipment Description           |            | slow)     | (dBA slow)       | (count) |          |         |          |              |          |
|                                 |            |           |                  |         |          |         |          |              |          |
|                                 |            |           |                  |         |          |         |          |              |          |
| Auger Drill Rig                 | 20         | 85        | 84               | 36      | 79.0     | 72.0    | 100      | 78.0         | 71.0     |
| Backhoe                         | 40         | 80        | 78               | 372     | 74.0     | 70.0    | 100      | 72.0         | 68.0     |
| Bar Bender                      | 20         | 80        | na               | 0       | 74.0     | 67.0    | 100      |              |          |
| Blasting                        | na         | 94        | na               | 0       | 88.0     |         | 100      |              |          |
| Boring Jack Power Unit          | 50         | 80        | 83               | 1       | 74.0     | 71.0    | 100      | 77.0         | 74.0     |
| Chain Saw                       | 20         | 85        | 84               | 46      | 79.0     | 72.0    | 100      | 78.0         | 71.0     |
| Clam Shovel (dropping)          | 20         | 93        | 87               | 4       | 87.0     | 80.0    | 100      | 81.0         | 74.0     |
| Compactor (ground)              | 20         | 80        | 83               | 57      | 74.0     | 67.0    | 100      | 77.0         | 70.0     |
| Compressor (air)                | 40         | 80        | 78               | 18      | 74.0     | 70.0    | 100      | 72.0         | 68.0     |
| Concrete Batch Plant            | 15         | 83        | na               | 0       | 77.0     | 68.7    | 100      |              |          |
| Concrete Mixer Truck            | 40         | 85        | 79               | 40      | 79.0     | 75.0    | 100      | 73.0         | 69.0     |
| Concrete Pump Truck             | 20         | 82        | 81               | 30      | 76.0     | 69.0    | 100      | 75.0         | 68.0     |
| Concrete Saw                    | 20         | 90        | 90               | 55      | 84.0     | 77.0    | 100      | 84.0         | 77.0     |
| Crane                           | 16         | 85        | 81               | 405     | 79.0     | 71.0    | 100      | 75.0         | 67.0     |
| Dozer                           | 40         | 85        | 82               | 55      | 79.0     | 75.0    | 100      | 76.0         | 72.0     |
| Drill Rig Truck                 | 20         | 84        | 79               | 22      | 78.0     | 71.0    | 100      | 73.0         | 66.0     |
| Drum Mixer                      | 50         | 80        | 80               | 1       | 74.0     | 71.0    | 100      | 74.0         | 71.0     |
| Dump Truck                      | 40         | 84        | 76               | 31      | 78.0     | 74.0    | 100      | 70.0         | 66.0     |
| Excavator                       | 40         | 85        | 81               | 1/0     | /9.0     | /5.0    | 100      | /5.0         | /1.0     |
| Flat Bed Truck                  | 40         | 84        | 74               | 4       | /8.0     | 74.0    | 100      | 68.0         | 64.0     |
| Front End Loader                | 40         | 80        | 79               | 96      | 74.0     | 70.0    | 100      | /3.0         | 69.0     |
| Generator                       | 50         | 82        | 81               | 19      | /6.0     | /3.0    | 100      | /5.0         | /2.0     |
| Generator (<25KVA, VIVIS signs) | 50         | 70        | /3               | 74      | 64.0     | 61.0    | 100      | 67.0         | 64.0     |
| Gradan                          | 40         | 85        | 83               | 70      | 79.0     | 75.0    | 100      | //.0         | /3.0     |
| Grader<br>Grannle (on Backhoo)  | 40         | 85<br>95  | na<br>oz         | 1       | 79.0     | 75.0    | 100      | 91.0         | 77.0     |
| Grappie (On Backhoe)            | 40         | 20        | ٥ <i>٢</i><br>دم | 1       | 79.0     | 75.0    | 100      | 81.0<br>76.0 | 77.0     |
| Hudra Broak Bam                 | 10         | 00        | 02               | 0       | 74.0     | 74.0    | 100      | 70.0         | 70.0     |
| Impact Rile Driver              | 20         | 90        | 101              | 11      | 89.0     | 22 O    | 100      | 95.0         | 88.0     |
| lackhammer                      | 20         | 85        | 80               | 133     | 79.0     | 72.0    | 100      | 83.0         | 76.0     |
| Man Lift                        | 20         | 85        | 75               | 23      | 79.0     | 72.0    | 100      | 69.0         | 62.0     |
| Mounted Impact Hammer (hoe ram) | 20         | 90        | 90               | 212     | 84.0     | 72.0    | 100      | 84.0         | 77.0     |
| Pavement Scarafier              | 20         | 85        | 90               | 212     | 79.0     | 72.0    | 100      | 84.0         | 77.0     |
| Paver                           | 50         | 85        | 77               | 9       | 79.0     | 76.0    | 100      | 71.0         | 68.0     |
| Pickup Truck                    | 40         | 55        | 75               | 1       | 49.0     | 45.0    | 100      | 69.0         | 65.0     |
| Pneumatic Tools                 | 50         | 85        | 85               | 90      | 79.0     | 76.0    | 100      | 79.0         | 76.0     |
| Pumps                           | 50         | 77        | 81               | 17      | 71.0     | 68.0    | 100      | 75.0         | 72.0     |
| Refrigerator Unit               | 100        | 82        | 73               | 3       | 76.0     | 76.0    | 100      | 67.0         | 67.0     |
| Rivit Buster/chipping gun       | 20         | 85        | 79               | 19      | 79.0     | 72.0    | 100      | 73.0         | 66.0     |
| Rock Drill                      | 20         | 85        | 81               | 3       | 79.0     | 72.0    | 100      | 75.0         | 68.0     |
| Roller                          | 20         | 85        | 80               | 16      | 79.0     | 72.0    | 100      | 74.0         | 67.0     |
| Sand Blasting (Single Nozzle)   | 20         | 85        | 96               | 9       | 79.0     | 72.0    | 100      | 90.0         | 83.0     |
| Scraper                         | 40         | 85        | 84               | 12      | 79.0     | 75.0    | 100      | 78.0         | 74.0     |
| Shears (on backhoe)             | 40         | 85        | 96               | 5       | 79.0     | 75.0    | 100      | 90.0         | 86.0     |
| Slurry Plant                    | 100        | 78        | 78               | 1       | 72.0     | 72.0    | 100      | 72.0         | 72.0     |
| Slurry Trenching Machine        | 50         | 82        | 80               | 75      | 76.0     | 73.0    | 100      | 74.0         | 71.0     |
| Soil Mix Drill Rig              | 50         | 80        | na               | 0       | 74.0     | 71.0    | 100      |              |          |
| Tractor                         | 40         | 84        | na               | 0       | 78.0     | 74.0    | 100      |              |          |
| Vacuum Excavator (Vac-truck)    | 40         | 85        | 85               | 149     | 79.0     | 75.0    | 100      | 79.0         | 75.0     |
| Vacuum Street Sweeper           | 10         | 80        | 82               | 19      | 74.0     | 64.0    | 100      | 76.0         | 66.0     |
| Ventilation Fan                 | 100        | 85        | 79               | 13      | 79.0     | 79.0    | 100      | 73.0         | 73.0     |
| Vibrating Hopper                | 50         | 85        | 87               | 1       | 79.0     | 76.0    | 100      | 81.0         | 78.0     |
| Vibratory Concrete Mixer        | 20         | 80        | 80               | 1       | 74.0     | 67.0    | 100      | 74.0         | 67.0     |
| Vibratory Pile Driver           | 20         | 95        | 101              | 44      | 89.0     | 82.0    | 100      | 95.0         | 88.0     |
| Warning Horn                    | 5          | 85        | 83               | 12      | 79.0     | 66.0    | 100      | 77.0         | 64.0     |
| Welder / Torch                  | 40         | 73        | 74               | 5       | 67.0     | 63.0    | 100      | 68.0         | 64.0     |
| chipper                         |            | 75        |                  |         |          |         |          |              |          |

Source:

FHWA Roadway Construction Noise Model, January 2006. Table 9.1

U.S. Department of Transportation

CA/T Construction Spec. 721.560

| Traffic  | Noise Spreadsheet Calcula    | ator         |                     |        |       |          |                        |        |          |             |            |         |         |                        |        |        |                |        |
|----------|------------------------------|--------------|---------------------|--------|-------|----------|------------------------|--------|----------|-------------|------------|---------|---------|------------------------|--------|--------|----------------|--------|
| Project: |                              |              |                     |        |       |          |                        |        |          |             |            |         |         |                        |        |        |                |        |
|          |                              |              |                     |        |       |          |                        | Input  | t        |             |            |         |         |                        |        | Output |                |        |
|          | Noise Level Descriptor       | : CNEL       |                     |        |       |          |                        |        |          |             |            |         |         |                        |        |        |                |        |
|          | Site Conditions              | : Hard       |                     |        |       |          |                        |        |          |             |            |         |         |                        |        |        |                |        |
|          | Traffic Input                | : ADT        |                     |        |       |          |                        |        |          |             |            |         |         |                        |        |        |                |        |
|          | Traffic K-Factor             | :            |                     |        |       | Distan   | ice to                 |        |          |             |            |         |         |                        |        |        |                |        |
|          |                              |              |                     |        |       | Direct   | ional                  |        |          |             | <b>.</b> . |         |         |                        | Di     |        | mbaum (faat)   |        |
|          | Segmei                       | -            | _                   |        | Speed | Centerin | e, (ieet) <sub>4</sub> |        |          | istribution | Character  | ristics |         | CNEL,                  |        |        | intour, (leet) | 3      |
| Number   | Name                         | From         | 10                  | ADT    | (mpn) | Near     | Far                    | % Auto | % Medium | % Heavy     | % Day      | % Eve   | % Night | (dBA) <sub>5,6,7</sub> | 75 dBA | 70 dBA | 65 dBA         | 60 dBA |
| Ex       | isting Conditions            |              |                     |        |       |          |                        |        |          |             |            |         |         |                        |        |        |                |        |
|          |                              |              |                     |        |       |          |                        |        |          |             |            |         |         |                        |        |        |                |        |
| 1        | University Avenue            | (northbound) |                     | 3,650  | 30    | 100      | 100                    | 97.0%  | 2.0%     | 1.0%        | 80.0%      | 15.0%   | 5.0%    | 55.6                   | 1      | 4      | 11             | 36     |
| 2        | University Avenue            | (southbound) |                     | 3,380  | 30    | 100      | 100                    | 97.0%  | 2.0%     | 1.0%        | 80.0%      | 15.0%   | 5.0%    | 55.3                   | 1      | 3      | 11             | 34     |
| 3        | Howe Avenue                  | US 50        | Fair Oaks Boulevard | 55,633 | 50    | 100      | 100                    | 97.0%  | 2.0%     | 1.0%        | 80.0%      | 15.0%   | 5.0%    | 73.5                   | 70     | 223    | 704            | 2225   |
| 4        | Fair Oaks Boulevard          | Howe Avenue  | Munroe Street       | 29,904 | 40    | 100      | 100                    | 97.0%  | 2.0%     | 1.0%        | 80.0%      | 15.0%   | 5.0%    | 68.0                   | 20     | 63     | 198            | 627    |
| 5        | J Street/Fair Oaks Boulevard | H Street     | Howe Avenue         | 41,226 | 40    | 100      | 100                    | 97.0%  | 2.0%     | 1.0%        | 80.0%      | 15.0%   | 5.0%    | 69.4                   | 27     | 86     | 274            | 865    |
|          |                              |              |                     |        |       |          |                        |        |          |             |            |         |         |                        |        |        |                |        |
|          |                              |              |                     |        |       |          |                        |        |          |             |            |         |         |                        |        |        |                |        |
|          |                              |              |                     |        |       |          |                        |        |          |             |            |         |         |                        |        |        |                |        |
|          |                              |              |                     |        |       |          |                        |        |          |             |            |         |         |                        |        |        |                |        |
|          |                              |              |                     |        |       |          |                        |        |          |             |            |         |         |                        |        |        |                |        |
|          |                              |              |                     |        |       |          |                        |        |          |             |            |         |         |                        |        |        |                |        |
|          |                              |              |                     |        |       |          |                        |        |          |             |            |         |         |                        |        |        |                |        |
|          |                              |              |                     |        |       |          |                        |        |          |             |            |         |         |                        |        |        |                |        |
|          |                              |              |                     |        |       |          |                        |        |          |             |            |         |         |                        |        |        |                |        |
|          |                              |              |                     |        |       |          |                        |        |          |             |            |         |         |                        |        |        |                |        |
|          |                              |              |                     |        |       |          |                        |        |          |             |            |         |         |                        |        |        |                |        |
|          |                              |              |                     |        |       |          |                        |        |          |             |            |         |         |                        |        |        |                |        |
|          |                              |              |                     |        |       |          |                        |        |          |             |            |         |         |                        |        |        |                |        |
|          |                              |              |                     |        |       |          |                        |        |          |             |            |         |         |                        |        |        |                |        |
|          |                              |              |                     |        |       |          |                        |        |          |             |            |         |         |                        |        |        |                |        |
|          |                              |              |                     |        |       |          |                        |        |          |             |            |         |         |                        |        |        |                |        |
|          |                              |              |                     |        |       |          |                        |        |          |             |            |         |         |                        |        |        |                |        |

\*All modeling assumes average pavement, level roadways (less than 1.5% grade), constant traffic flow and does not account for shielding of any type or finite roadway adjustments. All levels are reported as A-weighted noise levels.



#### Citation # Citations

- 1 Caltrans Technical Noise Supplement. 2009 (November). Table (5-11), Pg 5-60.
- 2 Caltrans Technical Noise Supplement. 2009 (November). Equation (5-26), Pg 5-60.
- 3 Caltrans Technical Noise Supplement. 2009 (November). Equation (2-16), Pg 2-32.
- 4 Caltrans Technical Noise Supplement. 2009 (November). Equation (5-11), Pg 5-47, 48.
- 5 Caltrans Technical Noise Supplement. 2009 (November). Equation (2-26), Pg 2-55, 56.
- 6 Caltrans Technical Noise Supplement. 2009 (November). Equation (2-27), Pg 2-57.
- 7 Caltrans Technical Noise Supplement. 2009 (November). Pg 2-53.
- 8 Caltrans Technical Noise Supplement. 2009 (November). Equation (5-7), Pg 5-45.
- 9 Caltrans Technical Noise Supplement. 2009 (November). Equation (5-8), Pg 5-45.
- 10 Caltrans Technical Noise Supplement. 2009 (November). Equation (5-9), Pg 5-45.
- 11 Caltrans Technical Noise Supplement. 2009 (November). Equation (5-13), Pg 5-49.
- 12 Caltrans Technical Noise Supplement. 2009 (November). Equation (5-14), Pg 5-49.

- Caltrans Technical Noise Supplement. 2013 (September). Table (4-2), Caltrans Technical Noise Supplement. 2013 (September). Equation (4 FHWA 2004 TNM Version 2.5 FHWA 2004 TNM Version 2.5 Caltrans Technical Noise Supplement. 2013 (September). Equation (2 Caltrans Technical Noise Supplement. 2013 (September). Equation (2 Caltrans Technical Noise Supplement. 2013 (September). Pg 2-57.
- FHWA 2004 TNM Version 2.5
- 13 Federal Highway Administration Traffic Noise Model Technical Manual. Report No. FHWA-PD-96-010. 1998 (January). Equation (16), Pg 67
- 14 Federal Highway Administration Traffic Noise Model Technical Manual. Report No. FHWA-PD-96-010. 1998 (January). Equation (20), Pg 69
- 15 Federal Highway Administration Traffic Noise Model Technical Manual. Report No. FHWA-PD-96-010. 1998 (January). Equation (18), Pg 69

#### **References**

California Department of Transportation (Caltrans). 2009 (November). Technical Noise Supplement. Available: http://www.dot.ca.gov/hq/env/noise/pub/tens\_complete.pdf. A 2017.

Pg 4-17. -5), Pg 4-17

-23), Pg 2-5 -24), Pg 2-5

ccessed Au



KEY: Orange cells are for input.

Grey cells are intermediate calculations performed by the model.

Green cells are data to present in a written analysis (output).

#### STEP 1: Determine units in which to perform calculation.

- If vibration decibels (VdB), then use Table A and proceed to Steps 2A and 3A.
- If peak particle velocity (PPV), then use Table B and proceed to Steps 2B and 3B.

# STEP 2A: Identify the vibration source and enter the reference vibration level (VdB) and distance.

# STEP 3A: Select the distance to the receiver.

#### Table A. Propagation of vibration decibels (VdB) with distance

| Noise Source/ID  | Referen         | Reference Noise Level |      |  |  |  |  |  |
|------------------|-----------------|-----------------------|------|--|--|--|--|--|
|                  | vibration level | vibration level       |      |  |  |  |  |  |
|                  | (VdB)           | @                     | (ft) |  |  |  |  |  |
| large bull dozer | 87.0            | @                     | 25   |  |  |  |  |  |
| large bull dozer | 87.0            | @                     | 25   |  |  |  |  |  |
|                  |                 |                       |      |  |  |  |  |  |
|                  |                 |                       |      |  |  |  |  |  |

| Attenuated Noise Level at Receptor |   |          |  |  |  |  |  |  |  |
|------------------------------------|---|----------|--|--|--|--|--|--|--|
| vibration level                    |   | distance |  |  |  |  |  |  |  |
| (VdB)                              | @ | (ft)     |  |  |  |  |  |  |  |
| 79.9                               | @ | 43       |  |  |  |  |  |  |  |
| 77.2                               | @ | 53       |  |  |  |  |  |  |  |
|                                    |   |          |  |  |  |  |  |  |  |
|                                    |   |          |  |  |  |  |  |  |  |

The Lv metric (VdB) is used to assess the likelihood for vibration to result in human annoyance.

# STEP 2B: Identify the vibration source and enter the reference peak particle velocity (PPV) and distance.

# STEP 3B: Select the distance to the receiver.

#### Table B. Propagation of peak particle velocity (PPV) with distance

| Noise Source/ID  | ource/ID Reference Noise Level |          |      |  |  |  |  |
|------------------|--------------------------------|----------|------|--|--|--|--|
|                  | vibration level                | distance |      |  |  |  |  |
|                  | (PPV)                          | @        | (ft) |  |  |  |  |
| large bull dozer | 0.089                          | @        | 25   |  |  |  |  |
| large bull dozer | 0.089                          | @        | 25   |  |  |  |  |
|                  |                                |          |      |  |  |  |  |
|                  |                                |          |      |  |  |  |  |

| Attenuated Noise Level at Receptor |   |          |  |  |  |  |  |  |  |  |
|------------------------------------|---|----------|--|--|--|--|--|--|--|--|
| vibration level                    |   | distance |  |  |  |  |  |  |  |  |
| (PPV)                              | @ | (ft)     |  |  |  |  |  |  |  |  |
| 0.049                              | @ | 37       |  |  |  |  |  |  |  |  |
| 0.029                              | @ | 53       |  |  |  |  |  |  |  |  |
|                                    |   |          |  |  |  |  |  |  |  |  |

The PPV metric (in/sec) is used for assessing the likelihood for the potential of structural damage.

#### Notes:

Computation of propagated vibration levels is based on the equations presented on pg. 185 of FTA 2018. Estimates of attenuated vibration levels do not account for reductions from intervening underground barriers or other underground structures of any type, or changes in soil type.

Federal Transit Association (FTA). 2018 (September). Transit Noise and Vibration Impact Assessment Manual. FTA Report No. 0123. Washington, D.C. Accessed: December 20, 2020. Page Available:

https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/research-innovation/118131/transit-noise-and-vibrationimpact-assessment-manual-fta-report-no-0123\_0.pdf



#### **Attenuation Calculations for Stationary Noise Sources**

**KEY:** Orange cells are for input.

Grey cells are intermediate calculations performed by the model.

Green cells are data to present in a written analysis (output).

# **STEP 1:** Identify the noise source and enter the reference noise level (dBA and distance).

STEP 2: Select the ground type (hard or soft), and enter the source and receiver heights.

**STEP 3: Select the distance to the receiver.** 

| Noise Source/ID | Reference Noise Level |   |          | Attenuation Characteristics |             |                 |        | Attenuated Noise Level at Receptor |       |   |          |  |
|-----------------|-----------------------|---|----------|-----------------------------|-------------|-----------------|--------|------------------------------------|-------|---|----------|--|
|                 | noise level d         |   | distance | Ground Type                 | Source      | urce Receiver ( |        | noise level                        |       | I | distance |  |
|                 | (dBA)                 | @ | (ft)     | (soft/hard)                 | Height (ft) | Height (ft)     | Factor |                                    | (dBA) | @ | (ft)     |  |
| HVAC units      | 70.0                  | @ | 50       | hard                        | 10          | 5               | 0.00   |                                    | 64.0  | @ | 100      |  |
|                 |                       |   |          |                             |             |                 |        |                                    |       |   |          |  |
|                 |                       |   |          |                             |             |                 |        |                                    |       |   |          |  |
|                 |                       |   |          |                             |             |                 |        |                                    |       |   |          |  |
|                 |                       |   |          |                             |             |                 |        |                                    |       |   |          |  |
|                 |                       |   |          |                             |             |                 |        |                                    |       |   |          |  |
|                 |                       |   |          |                             |             |                 |        |                                    |       |   |          |  |
|                 |                       |   |          |                             |             |                 |        |                                    |       |   |          |  |
|                 |                       |   |          |                             |             |                 |        |                                    |       |   |          |  |
|                 |                       |   |          |                             |             |                 |        |                                    |       |   |          |  |
|                 |                       |   |          |                             |             |                 |        |                                    |       |   |          |  |
|                 |                       |   |          |                             |             |                 |        |                                    |       |   |          |  |

Notes:

Estimates of attenuated noise levels do not account for reductions from intervening barriers, including walls, trees, vegetation, or structures of any type.

Computation of the attenuated noise level is based on the equation presented on pg. 176 and 177 of FTA 2018.

Computation of the ground factor is based on the equation presentd in Table 4-26 on pg. 86 of FTA 2018, where the distance of the reference noise leve can be adjusted and the usage factor is not applied (i.e., the usage factor is equal to 1).

Sources:

Federal Transit Association (FTA). 2018 (September). Transit Noise and Vibration Impact Assessment. Washington, D.C. Available:

<http://www.transit.dot.gov/sites/fta.dot.gov/files/docs/research-innovation/118131/transit-noise-and-vibration-impact-assessment-manual-fta-report-no-