CPE/EEE 64 PAL Worksheet \#10

VERILOG WORKSHEET-1

1) Verilog HDL is case-sensitive? True or False
2) Which keyword signifies the end of a module definition?
3) Which Keyword signifies the beginning of a block of statements?
4) Which of the following are legal Verilog identifiers? 632h,_6hft, A123,or

One can concatenate vectors, scalars, and part vectors to form other vectors. The concatenated vector is enclosed within braces. Commas separate the components -scalars, vectors, and part vectors. If a and b are 8 - and 4 -bit wide vectors, respectively and c is a scalar $\{a, b, c\}$ stands for a concatenated vector of 13 bits width. The vector components are formed in the order shown - c is the least significant bit and a[7] the most significant bit and the other bits are in between in the order specified.

Example 1) For the snippet of code given below evaluate $\{b, c\}$
wire $\mathrm{a}=1$ 'b1;
wire $b=2$ 'b10;
wire c = 3'b101;
$\{b, c\}=5^{\prime} b 10101 ;$
5) For the snippet of code given below evaluate $\left\{b, a, 2^{\prime} b 11\right\}$
wire a = 3'b101;
wire $b=2 \prime b 11$;
wire c = $3^{\prime} \mathrm{b} 011$;
6) For the snippet of code given below evaluate $\left\{c, a, b, 5^{\prime} b 10110\right\}$
wire $\mathrm{a}=2^{\prime} \mathrm{b} 11$;
wire $b=5^{\prime} \mathrm{b} 11100$;
wire c = $3^{\prime} \mathrm{b} 100$;

When it is necessary to replicate vectors, scalars, etc., to form other vectors, the same can be arrived at in a compact manner using the repetition multiplier again through concatenation.

Example 2) If wire $a=2^{\prime} b 10$ then $\{3\{a\}\}=6^{\prime} b 101010$.

CPE/EEE 64 PAL Worksheet \#10

7) Evaluate $\{2\{a\}, 5\{b\}\}$ if wire $a=3^{\prime} b 101$; wire $b=2^{\prime} b 10$;
$A \gg b$ The set of bits representing A are shifted right repeatedly b times. $A \ll b$ The set of bits representing A are shifted left repeatedly b times.
8) If $A=8^{\prime} h D 5$ evaluate $A \gg 4$ and $A \ll 4$.

Operator Type	Symbol
Logical negation	$!$
Bit wise negative	\sim
Reduction AND	$\&$
Reduction NAND	$\sim \&$
Reduction OR	।
Reduction NOR	\sim
Reduction XOR	\wedge
Reduction XNOR	$\sim \wedge$

9) If $A=101, B=011$, and $C=010$, what is the value of $\{A, B\} \mid\{B, C\}$.
10) If $A=1110$, and $B=1011$, what is the value of $\{A,(\sim B)\}$.
