1. Refer to the x-y coordinate system below. Using the right-hand rule, indicate the direction of the positive z-axis.

2. Refer to the x-z coordinate system below. Using the right-hand rule, indicate the direction of the positive y-axis.

3. Refer to the x-y-z coordinate system below. Draw the positive Cartesian unit vectors that designate the direction of the positive x-y-z axes.

- 4. The x, y, and z components of force **F** are given in the figure below.
 - a. Express \mathbf{F} as a Cartesian vector
 - b. Find the magnitude of **F**
 - c. Determine the coordinate direction angles, α , β , and γ , of **F**
 - d. Using a straightedge, sketch **F** on the figure. Label α , β , and γ .

5. Refer to the figure below. Determine the x, y, z components of the force **F**. Express the force as a Cartesian vector.

- 6. Refer to the figure below.
 - a. Determine the x, y, z components of the forces F_1 and F_2 and express each force as a Cartesian vector.
 - b. Determine the resultant force $\boldsymbol{F}_{\boldsymbol{R}}$
 - c. Determine the magnitude of $F_{R} \label{eq:relation}$
 - d. Determine the coordinate direction angles, α , β , and γ , of F_R
 - e. Find the unit vector in the direction of $\boldsymbol{F}_{\boldsymbol{R}}$
 - f. Using a straightedge, sketch F_R and its unit vector on the figure

