1. Refer to the $\mathrm{x}-\mathrm{y}$ coordinate system below. Using the right-hand rule, indicate the direction of the positive z -axis.

2. Refer to the $\mathrm{x}-\mathrm{z}$ coordinate system below. Using the right-hand rule, indicate the direction of the positive y-axis.

3. Refer to the $x-y-z$ coordinate system below. Draw the positive Cartesian unit vectors that designate the direction of the positive $x-y-z$ axes.

4. The x, y, and z components of force \mathbf{F} are given in the figure below.
a. Express \mathbf{F} as a Cartesian vector
b. Find the magnitude of \mathbf{F}
c. Determine the coordinate direction angles, α, β, and γ, of \mathbf{F}
d. Using a straightedge, sketch \mathbf{F} on the figure. Label α, β, and γ.

5. Refer to the figure below. Determine the x, y, z components of the force \mathbf{F}. Express the force as a Cartesian vector.

6. Refer to the figure below.
a. Determine the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ components of the forces \mathbf{F}_{1} and \mathbf{F}_{2} and express each force as a Cartesian vector.
b. Determine the resultant force $\mathbf{F}_{\mathbf{R}}$
c. Determine the magnitude of $\mathbf{F}_{\mathbf{R}}$
d. Determine the coordinate direction angles, α, β, and γ, of $\mathbf{F}_{\mathbf{R}}$
e. Find the unit vector in the direction of $\mathbf{F}_{\mathbf{R}}$
f. Using a straightedge, sketch $\mathbf{F}_{\mathbf{R}}$ and its unit vector on the figure

