4. Position Vectors, Force Vectors on a Line, Dot Product

1. Points A and B are located in space. Point A has coordinates $(2,4,6)$ and point B has coordinates $(-3,5,-7)$. The origin is located at $(0,0,0)$.
a. Find the position vector from the origin to point A, \mathbf{r}_{A}.
b. Find the position vector from the origin to point $B, \mathbf{r}_{\mathbf{B}}$.
c. Find the position vector from Point A to point $B, \mathbf{r}_{A B}$.
d. Find the position vector from Point B to Point $A, \mathbf{r}_{\mathrm{BA}}$.
e. Determine the magnitude of \mathbf{r}_{AB}.
i. How does the magnitude of \mathbf{r}_{AB} compare to the magnitude of \mathbf{r}_{BA} ?
f. Find the unit vector in the direction of \mathbf{r}_{AB}
2. Express the force \mathbf{F} as a Cartesian vector and determine its coordinate direction angles α, β, and γ.

3. Forces \mathbf{F}_{1} and \mathbf{F}_{2} are acting on a support, which is represented by Point O. Determine the resultant force acting at O and express it as a Cartesian vector. Find the magnitude of the resultant force.

4. Pole $A B$ is fixed to a wall at Point B. The pole is subjected to a force \mathbf{F} at Point A. If the magnitude of the force is equal to 2 kN :
a. Find the angle θ between the force and the pole
b. Find the projection of \mathbf{F} along the pole

