PAL Worksheet ENGR 30

4. Position Vectors, Force Vectors on a Line, Dot Product

- 1. Points A and B are located in space. Point A has coordinates (2, 4, 6) and point B has coordinates (-3, 5, -7). The origin is located at (0, 0, 0).
 - a. Find the position vector from the origin to point A, \mathbf{r}_{A} .
 - b. Find the position vector from the origin to point B, \mathbf{r}_{B} .
 - c. Find the position vector from Point A to point B, r_{AB}.
 - d. Find the position vector from Point B to Point A, r_{BA}.
 - e. Determine the magnitude of \mathbf{r}_{AB} .
 - i. How does the magnitude of r_{AB} compare to the magnitude of r_{BA} ?
 - f. Find the unit vector in the direction of \mathbf{r}_{AB}
- 2. Express the force **F** as a Cartesian vector and determine its coordinate direction angles α , β , and γ .

4. Position Vectors, Force Vectors on a Line, Dot Product

3. Forces **F**₁ and **F**₂ are acting on a support, which is represented by Point O. Determine the resultant force acting at O and express it as a Cartesian vector. Find the magnitude of the resultant force.

- 4. Pole AB is fixed to a wall at Point B. The pole is subjected to a force **F** at Point A. If the magnitude of the force is equal to 2 kN:
 - a. Find the angle θ between the force and the pole
 - b. Find the projection of \mathbf{F} along the pole

