CPE/EEE 64 PAL Worksheet

DECODERS AND ENCODERS WORKSHEET

1) A decoder is a combinational circuit that converts binary information from n input lines to a maximum of 2^{n} unique output lines. If the n -bit coded information has unused combinations, then what happens to the decoder output?

Example1) Using a decoder and external gates, design the combinational circuit defined by the following Boolean functions,
$F_{1}=x^{\prime} y z^{\prime}+x z$
$F_{2}=x y^{\prime} z^{\prime}+x^{\prime} y$
$\mathrm{F}_{3}=\mathrm{x}^{\prime} \mathrm{y}^{\prime} \mathrm{z}^{\prime}+\mathrm{xy}$
$F_{1}=x^{\prime} y z^{\prime}+x z\left(y+y^{\prime}\right)=x^{\prime} y z^{\prime}+x y z+x y^{\prime} z=\sum(2,5,7)$
$F_{2}=x y^{\prime} z^{\prime}+x^{\prime} y\left(z+z^{\prime}\right)=x y^{\prime} z^{\prime}+x^{\prime} y z+x^{\prime} y z^{\prime}=\sum(2,3,4)$
$\mathrm{F}_{3}=\mathrm{x}^{\prime} \mathrm{y}^{\prime} \mathrm{z}^{\prime}+\mathrm{xy}\left(z+z^{\prime}\right)=\mathrm{x}^{\prime} \mathrm{y}^{\prime} \mathrm{z}^{\prime}+x y z+x y z^{\prime}=\sum(0,6,7)$

2)

Using a decoder and external gates, design the combinational circuit defined by the following
Boolean functions,
$F_{1}=\left(y^{\prime}+\mathrm{z}\right) \mathrm{x}$
$F_{2}=y^{\prime} z^{\prime}+x^{\prime} y+y z^{\prime}$
$\mathrm{F}_{3}=(\mathrm{x}+\mathrm{y}) \mathrm{z}$
Example 2) How many 2×4 decoders will be required to implement 4×16 decoder?
$16 / 4=4$
$4 / 4=1$
$\Rightarrow 4+1=5$
3) How many 3×8 decoders will be required to implement 6×64 decoder?
4) How many 4×16 decoders will be required to implement 8×256 decoder?

CPE/EEE 64 PAL Worksheet

Since a NOR gate connected to output $F(x, y, z)=\sum(0,2,3,5,6)$
5) Find $F(x, y, z)=$?

An encoder has 2 n (or fewer) input lines and n output lines. The output lines, as an aggregate, generate the binary code corresponding to the input value.
6) A decimal to binary encoder will have how many inputs and outputs?
7) The output 2-bit comparator is logic 1 when the input X is greater than the input Y. How do you calculate the total number of combinations for which the output is logic 1 ?
8) Explain if and how a BCD to seven segment conversion requires an encoder or decoder.
9) Can an encoder can be built by using which basic logic gate? Explain how.
10) Can a decoder be built by using which universal gate? Shown an example.

